
Opening up architectures of software-

intensive systems
A functional decomposition to support system comprehension

P. Charland
D. Ouellet
D. Dessureault
M. Lizotte
DRDC Valcartier

Defence R&D Canada – Valcartier
Technical Memorandum

DRDC Valcartier TM 2006-732
October 2007

Opening up architectures of software-
intensive systems
A functional decomposition to support system comprehension

P. Charland
D. Ouellet
D. Dessureault
M. Lizotte
DRDC Valcartier

Defence R&D Canada - Valcartier
Technical Memorandum
DRDC Valcartier TM 2006-732
October 2007

Author

Philippe Charland

Approved by

Guy Turcotte

Head System of Systems

Approved for Release by

Philip Twardawa

Chief Scientist

© Her Majesty the Queen as represented by the Minister of National Defence, 2007

© Sa majesté la reine, représentée par le ministre de la Défense nationale, 2007

Abstract

With the increasing needs of the Canadian Forces (CF) for systems interoperability,
techniques and tools have to be developed in order to build systems of systems (SoS),
i.e., systems whose components are themselves independent systems from an
operational and managerial viewpoint. However, before existing systems can
interoperate, their architectures first need to be recovered and comprehended. This
technical memorandum describes the functional decomposition of an integrated suite
of tools to assist with software system architecture recovery and comprehension. It
was designed based on the requirements already identified in the scientific literature
for comprehension tools, on a qualitative study conducted using existing tools, as well
as on a state-of-the-art survey on system architecture recovery and comprehension.
Following the conception of this functional decomposition, a prototype implementing
it will be developed into an integrated development environment (IDE) to assist the CF
in recovering and comprehending the architecture of already existing software
systems.

Résumé

Avec les besoins croissants des Forces canadiennes (FC) en matière d’interopérabilité
de systèmes, des techniques et outils ont besoin d’être développés afin de construire
des systèmes de systèmes (SdS), c’est-à-dire des systèmes dont les composantes sont
elles-mêmes des systèmes indépendants d’un point de vue opérationnel et de gestion.
Cependant, avant que des systèmes existants puissent interopérer, leurs architectures
ont d’abord besoin d’être récupérées et comprises. Le présent mémorandum technique
décrit la décomposition fonctionnelle d’une suite d’outils intégrés pour aider à la
récupération et la compréhension d’architectures de systèmes logiciels. Elle a été
conçue en se basant sur les exigences déjà identifiées dans la littérature scientifique
pour les outils de compréhension, sur une étude qualitative menée en utilisant les outils
existants, ainsi que sur une revue de l’état des connaissances portant sur la
récupération et la compréhension d’architectures de systèmes. À la suite de la
conception de cette décomposition fonctionnelle, un prototype l’implantant sera
développé dans un environnement de développement intégré (EDI) afin d’aider les FC
à récupérer et comprendre les architectures de systèmes logiciels déjà existants.

DRDC Valcartier TM 2006-732 i

This page intentionally left blank.

ii DRDC Valcartier TM 2006-732

Executive Summary

Over the years, the needs of the Canadian Forces (CF) for systems interoperability
have significantly increased. As the CF demand greater systems interoperability, their
software architects need techniques and tools to comprehend the architecture of
existing systems before making them interoperate in order to build systems of systems
(SoS). Although some requirements have already been identified in the scientific
literature for comprehension tools, these are not specifically targeted for the
understanding of software systems at the architectural level. This technical
memorandum describes the functional decomposition of an integrated suite of tools to
assist with the recovery and comprehension of software systems architectures. It was
designed by the members of the Opening up Architectures of Software-Intensive
Systems (OASIS) project. It is based, to some extent, on the requirements one can find
in the open literature. It is also based on the results of a qualitative study conducted to
assess the value added by existing analysis tools on the understanding of participants
performing comprehension tasks, at the architectural level, on large scale military
applications. Finally, it takes into consideration the findings contained in a state-of-
the-art survey on system architecture recovery and comprehension that was carried out
as a previous phase of the OASIS project.

The functional architecture presented in this technical memorandum consists of the
following ten subsystems:

Repositories Store persistently the facts extracted about a system under study.

Data Access Provides an interface between the meta-model used by the Information
Management Services subsystem and the Repositories.

Information Management Services Provides a meta-model to facilitate the
integration of information producers and consumers as well as the discovery of
available information.

Fact Extraction Fundamental step of architecture recovery and comprehension that
consists of finding pieces of information about a system under study.

Analysis Allows to separate a system into its constituent parts.

Synthesis Provides the capacity to combine several extracted facts to form a new
whole at a higher level of abstraction.

Visualization Uses graphical techniques to make a software system visible through
the display of its artifacts and behavior.

Documentation Generation Produces system documentation at different levels of
abstraction from the extracted facts.

DRDC Valcartier TM 2006-732 iii

Comprehension Process Provides guidance to users in recovering and
comprehending the architecture of a software system.

Graphical User Interface Allows users to interact with and control the architecture
recovery and comprehension tool in a highly visual manner.

The above functional decomposition is a way to synthesize the knowledge of the
OASIS research group on architecture recovery and comprehension. It serves as a
reference model which is destined to evolve with the advancement of the group’s
knowledge in this research area and orient its future work.

Following the conception of the functional decomposition previously described, a
prototype implementing a subset of it will be developed into an integrated
development environment (IDE) to assist the CF in recovering and comprehending the
architecture of already existing software systems. Ideally, once this prototype is
developed, another study, similar to the qualitative study previously conducted, but
with an improved design and set of comprehension tasks, should be performed. Its
objective would be to assess the added value of the OASIS architecture recovery and
comprehension prototype on the understanding of participants.

Charland, P., Ouellet D., Dessureault, D., Lizotte M. 2007. Opening up architectures of
software-intensive systems: A functional decomposition to support system
comprehension. DRDC Valcartier TM 2006-732. Defence R&D Canada - Valcartier.

iv DRDC Valcartier TM 2006-732

Sommaire

Au cours des années, les besoins des Forces canadiennes (FC) en matière
d’interopérabilité de systèmes ont augmenté de façon significative. Alors que les FC
exigent plus d’interopérabilité entre les systèmes, leurs architectes logiciels ont besoin
de techniques et d’outils pour comprendre l’architecture des systèmes existants avant
de les faire interopérer pour construire un système de systèmes (SdS). Bien que des
exigences aient déjà été identifiées dans la littérature scientifique pour des outils de
compréhension, celles-ci ne sont pas expressément ciblées pour la compréhension de
systèmes logiciels sur le plan de l’architecture. Le présent mémorandum technique
décrit la décomposition fonctionnelle d’une suite d’outils intégrés pour aider à
récupérer et comprendre les architectures de systèmes logiciels. Celle-ci a été conçue
par les membres du projet Ouverture d’Architectures de Systèmes Informatisés
Significativement (OASIS). Elle est basée, jusqu’à un certain point, sur les exigences
qui peuvent être trouvées dans la littérature ouverte. Elle est aussi fondée sur les
résultats d’une étude qualitative qui a été menée afin d’évaluer la valeur ajoutée
d’outils d’analyse sur la compréhension de participants accomplissant des tâches de
compréhension sur des applications militaires de grande taille, sur le plan de
l’architecture. Finalement, cette décomposition fonctionnelle tient compte des
conclusions contenues dans une étude de pointe sur la récupération et la
compréhension d’architectures de systèmes qui a été menée lors d’une phase
précédente du projet OASIS.

L’architecture fonctionnelle présentée dans ce mémorandum technique est composée
des dix sous-systèmes suivants :

Référentiels Enregistrent de façon persistante les faits qui ont été extraits à partir du
système à l’étude.

Accès aux données Fournit une interface entre le méta-modèle utilisé par le sous-
système Services de gestion de l’information et les Référentiels.

Services de gestion de l’information Fournit un méta-modèle afin de faciliter
l’intégration de producteurs et de consommateurs d’information ainsi que la
découverte d’information disponible.

Extraction de faits Étape fondamentale de la récupération et la compréhension
d’architectures qui consiste à trouver des fragments d’information au sujet d’un
système à l’étude.

Analyse Permet de séparer un système en ses parties constituantes.

Synthèse Fournit la capacité de combiner plusieurs faits qui ont été extraits pour
former un nouveau tout à un niveau d’abstraction supérieur.

DRDC Valcartier TM 2006-732 v

Visualisation Utilise des techniques graphiques afin de rendre visible un système
logiciel par l’entremise de l’affichage de ses artefacts et de son fonctionnement.

Génération de documentation Produit la documentation du système à différents
niveaux d’abstraction à partir des faits qui ont été extraits.

Processus de compréhension Guide les usagers pour récupérer et comprendre
l’architecture d’un système logiciel.

Interface usager graphique Permet aux usagers de contrôler et d’interagir avec
l’outil de récupération et de compréhension d’architectures de manière très visuelle.

La décomposition fonctionnelle ci-dessus est une façon de synthétiser la connaissance
du groupe de recherche OASIS en récupération et compréhension d’architectures. Elle
sert de modèle de référence qui sera appelé à évoluer avec l’avancement des
connaissances du groupe dans ce domaine de recherche ainsi qu’à orienter ses travaux
futurs.

Suite à la conception de la décomposition fonctionnelle décrite précédemment, un
prototype implantant un sous-ensemble de celle-ci sera développé dans un
environnement de développement intégré (EDI) afin d’aider les FC à récupérer et
comprendre les architectures de systèmes logiciels déjà existants. Idéalement, une fois
que ce prototype sera développé, une autre étude, similaire à l’étude qualitative
précédente, mais avec une conception et une série de tâches de compréhension
améliorées, devrait être menée. Son objectif serait d’évaluer la valeur ajoutée du
prototype de récupération et de compréhension d’architectures OASIS sur la
compréhension des participants.

Charland, P., Ouellet D., Dessureault, D., Lizotte M. 2007. Opening up architectures of
software intensive-systems: A functional decomposition to support system
comprehension. DRDC Valcartier TM 2006-732. R&D pour la défense Canada -
Valcartier.

vi DRDC Valcartier TM 2006-732

Table of Contents

Abstract / Résumé.. i

Executive Summary... iii

Sommaire.. v

Table of Contents ... vii

List of Figures.. xi

1. Introduction ... 1

2. Cognitive Models of Program Comprehension ... 3
2.1 Concepts and Terminology... 3
2.2 Cognitive Models ... 3

2.2.1 Bottom-Up... 3
2.2.2 Top-Down ... 4
2.2.3 Knowledge-Based ... 4
2.2.4 Systematic and As-Needed.. 5
2.2.5 Integrated Metamodel.. 5

3. Factors Affecting Comprehension... 6
3.1 Program Characteristics.. 6
3.2 Individual Programmer Differences ... 6
3.3 Task Variability .. 6

4. Cognitive Models and Tool Implications .. 8
4.1 Browsing Support... 8
4.2 Searching .. 8
4.3 Multiple Views ... 8
4.4 Context-Driven Views.. 9

5. Tool Requirements Explicitly Identified ... 10
5.1 Biggerstaff .. 10

DRDC Valcartier TM 2006-732 vii

5.2 Von Mayrhausser and Vans.. 10
5.3 Singer and Lethbridge .. 10
5.4 Erdös and Sneed ... 11

6. Limitations of Existing Tools .. 12
6.1 Multi-Language Support .. 12
6.2 Static Analysis Support .. 12
6.3 Dynamic Analysis Support... 12
6.4 Dynamic Visualization and Abstraction... 12
6.5 Domain Knowledge.. 13

7. OASIS Functional Architecture... 14
7.1 Repositories .. 15

7.1.1 Source Code .. 15
7.1.1.1 File System ... 15
7.1.1.2 Versioning Systems .. 15
7.1.1.3 Integrated Development Environments 16

7.1.2 Facts .. 17
7.1.3 Models and Diagrams.. 18
7.1.4 Documents... 19

7.2 Data Access .. 19
7.2.1 Data Object Definition .. 19
7.2.2 Marshalling.. 20
7.2.3 Unmarshalling ... 21

7.3 Information Management Services... 21
7.3.1 Exchange Model Definition .. 21
7.3.2 Browsing ... 22
7.3.3 Querying.. 22
7.3.4 Publishing.. 23
7.3.5 Subscription... 23

7.4 Fact Extraction ... 23
7.4.1 Static Fact Extraction .. 23

7.4.1.1 Parsing .. 23
7.4.1.2 Decompilation .. 25

viii DRDC Valcartier TM 2006-732

7.4.1.3 Build File Parsing ... 26
7.4.1.4 Database Schema Extraction .. 26

7.4.2 Dynamic Fact Extraction... 27
7.4.2.1 Instrumenting.. 27
7.4.2.2 Profiling.. 30
7.4.2.3 Monitoring.. 32

7.5 Analysis .. 32
7.5.1 Software Metrics ... 33

7.5.1.1 Size Metrics .. 33
7.5.1.2 Complexity Metric.. 33
7.5.1.3 Object-Oriented Class Metrics ... 34
7.5.1.4 Object-Oriented Package Metrics....................................... 34

7.5.2 Feature Location.. 35
7.5.3 Domain Knowledge Exploitation .. 36

7.6 Synthesis... 37
7.6.1 Design Pattern Recovery ... 37
7.6.2 Platform Models Transformations... 38
7.6.3 Clustering .. 40

7.7 Visualization... 40
7.7.1 Package Diagram... 41
7.7.2 Class Diagram ... 42
7.7.3 Component Diagram ... 42
7.7.4 Interaction Diagram... 43
7.7.5 Call Graph ... 45
7.7.6 Statechart Diagram .. 45
7.7.7 Activity Diagram... 46
7.7.8 Use Case Diagram... 47
7.7.9 Semantic Zooming .. 48

7.8 Documentation Generation... 49
7.8.1 Rational Unified Process ... 51
7.8.2 Department of Defense Architecture Framework 52
7.8.3 IEEE 12207 ... 53

7.9 Comprehension Process.. 55

DRDC Valcartier TM 2006-732 ix

7.9.1 Process Management ... 55
7.9.2 Process Execution.. 56
7.9.3 Domain Knowledge Definition ... 57

7.10 Graphical User Interface... 57

8. Conclusions and Future Work ... 59

9. References ... 60

10. Appendix A ... 68

List of Acronyms.. 72

Distribution List.. 75

x DRDC Valcartier TM 2006-732

List of Figures

Figure 1. OASIS Functional Architecture .. 14

Figure 2. Eclipse Java Model ... 16

Figure 3. Eclipse Java Model at the Source Code Level .. 17

Figure 4. Relationships between Metamodels, Models, and Diagrams.................................... 18

Figure 5. Altova MapForce [36]... 20

Figure 6. Enterprise Identifier Composition... 20

Figure 7. Exchange Model for a Call Graph... 21

Figure 8. View of an Abstract Syntax Tree .. 24

Figure 9. Java Source Code .. 25

Figure 10. Java Source Code [57] .. 29

Figure 11. Java Bytecode [57].. 29

Figure 12. Instrumented Java Bytecode [57].. 30

Figure 13. TPTP Coverage Statistics View .. 31

Figure 14. TPTP Execution Information Report .. 31

Figure 15. FileMon for Windows ... 32

Figure 16. MDA Transformations .. 39

Figure 17. Inverse MDA Transformations ... 39

Figure 18. Package Diagram [85]... 41

Figure 19. Class Diagram [85] ... 42

Figure 20. Component Diagram [85] ... 43

Figure 21. Sequence Diagram [85]... 44

Figure 22. Communication Diagram [85] .. 44

Figure 23. Rational Quantify Call Graph ... 45

DRDC Valcartier TM 2006-732 xi

Figure 24. Statechart Diagram [85] .. 46

Figure 25. Activity Diagram [85] ... 47

Figure 26. Use Case Diagram [85] ... 48

Figure 27. Semantic Zooming .. 49

Figure 28. Rocumentation Process [91].. 50

Figure 29. Differences between Forward and Reverse Engineering Viewpoints [90] 51

Figure 30. Major Work Products of the Rational Unified Process [96] 52

Figure 31. DoDAF View Sets [98] ... 53

Figure 32. 12207 Life Cycle Processes [100]... 54

Figure 33. 12207 Activity Classification [102] .. 55

Figure 34. Eclipse Cheat Sheet... 56

Figure 35. View Coordination in Eclipse ... 58

Figure 36. Concept Lattice ... 69

Figure 37. Sparse Representation ... 69

List of Tables

Table 1. Diagrams Associated with Each View ... 41

Table 2. Relation Example [69].. 68

Table 3. Concepts for Table 2 .. 68

xii DRDC Valcartier TM 2006-732

1. Introduction

Over the years, the needs of the Canadian Forces (CF) for systems interoperability
have significantly increased. For example, to improve the automation of the
Command, Control, Communications, Computers, Intelligence, Surveillance, and
Reconnaissance (C4ISR) process, a large number of software intensive systems must
interact together to handle a massive amount of information. The CF also require
systems interoperability when they collaborate with allied nations to achieve common
objectives.

As the CF demand greater systems interoperability, their software architects need
techniques and tools to understand the architecture of existing systems and make them
interoperate in order to build a system of systems (SoS). A SoS is an assemblage of
components which individually may be regarded as systems and which possess two
additional properties: operational and managerial independence of the components [1].
Each component system must be able to operate independently if the SoS is
disassembled. Furthermore, even though the component systems are separately
acquired and integrated, they maintain a continuing operating existence independent of
the SoS. An example of a SoS is a system built for a coalition operation, where each
participating nation brings its own operational planning system.

Before existing systems can interoperate, their architectures first need to be
understood. The architecture of a system can be defined as the structure of its
components, their interrelationships, as well as the principles and guidelines governing
their design and evolution over time [2]. However, understanding the architecture of
systems can prove to be quite a complex task. These systems have most probably
undergone several code revisions without a real concern about maintaining their
architectural design documentation up to date [3]. As a result, architecture recovery
has to be performed to regenerate coherent abstractions and guide architects during
their comprehension task. Architecture recovery can be described as the process of
retrieving up-to-date architectural information from existing source code artefacts. The
rational of system architectural recovery is to provide reasoning behind the software
architecture or high-level organization of a system.

To support the effort of developing methodologies, techniques, and tools needed for
the recovery and comprehension of existing systems architecture, the SoS section of
Defence Research and Development Canada (DRDC) Valcartier started a project
called Opening up Architectures of Software-Intensive Systems (OASIS) [4]. Its
objective is to develop technical solutions in order to reduce the time needed to
comprehend systems to be integrated into a SoS.

In a previous phase of the OASIS project, a state-of-the-art survey [5] of the current
techniques and tools for architecture recovery and comprehension was carried out.
Following this survey, a qualitative study was conducted to assess the added value of a
selected subset of the tools previously identified on the understanding of participants
performing high-level comprehension tasks on large-scale military systems [6].

DRDC Valcartier TM 2006-732 1

The present technical memorandum describes the functional decomposition of an
integrated suite of tools for architecture recovery and comprehension. It will address
the limitations of the existing tools which were identified in the state-of-the-art survey
and as part of the qualitative study. The remainder of this technical memorandum is
organized as follows: Section 2 presents an overview of the comprehension models. In
Section 3, the factors affecting comprehension are provided. In Section 4 and 5, the
implications of cognitive models on tool requirements are discussed. Section 6
presents the limitations of existing tools for architecture recovery and comprehension.
In Section 7, the different subsystems of the OASIS functional architecture are
described. Finally, Section 8 provides conclusions and future work.

2 DRDC Valcartier TM 2006-732

2. Cognitive Models of Program Comprehension

Several studies have been conducted to determine which strategies programmers use
when trying to understand unfamiliar code. The results have demonstrated that
different cognitive models are applied to create mental representations of programs
under examination. But before these models can be reviewed, their terminology first
needs to be defined.

2.1 Concepts and Terminology

A programmer’s mental representation of a program under study is referred as the
mental model [7]. The cognitive processes and temporary information structures used
by the programmer to form the mental model are described by a cognitive model [7].

Programming plans are generic fragments of source code which represent typical
programming scenarios. An example of a programming plan is a sorting algorithm [8].
Delocalized plans are pieces of source code which are conceptually related, but
physically located in non-contiguous parts of a program [9]. An example of a
delocalized plan is the “retrieve-a-record & process-the-record” plan in a database
management system. The first part of the plan is located in the SEARCH routine, while
the second part is located, non-contiguously, in the DELETE routine [9].

Beacons are familiar features in the source code which act as cues to the presence of
certain structures [10]. An example of a beacon is the swapping of two variables in a
sorting algorithm. Rules of programming discourse are the programming conventions
and algorithm implementations [8].

2.2 Cognitive Models

Following is an overview of some of the influential cognitive models in program
comprehension as reviewed by Storey et al. [11].

2.2.1 Bottom-Up

Shneiderman [12,13] proposed that programs are understood bottom-up, i.e.,
by first reading the source code and then mentally grouping lower level
software artifacts into higher level abstractions that are more meaningful.
These abstractions are further aggregated until a high level comprehension of
the program is obtained. The cognitive framework of Shneiderman and
Mayer [12] makes a distinction between the syntactic and semantic
knowledge of a program. The syntactic knowledge is language dependent and
relates to the statements of a program, while the semantic knowledge is
language independent and is formed in progressive layers until a mental
model of the application domain is built.

DRDC Valcartier TM 2006-732 3

In [14], Pennington also observed that programmers use a bottom-up strategy
when trying to understand a program. They first produce a control flow
abstraction, referred as the program model, which represents the sequence of
operations of the program. This model is generated by grouping source code
microstructures (statements, predicate statements, dependencies) into
macrostructures (source code structure abstractions) and then by cross-
referencing them. After the program model has been assimilated, the situation
model is generated. This model incorporates knowledge about the data flow
and the functional abstractions, e.g., the program goals hierarchy.

2.2.2 Top-Down

Brooks formed a theory that programs are understood in a top-down manner,
where the knowledge about the application domain is first reconstructed and
then mapped on the source code [10]. This process starts with the formulation
of a hypothesis about the general nature of the program. This global
hypothesis is then refined into a hierarchy of secondary hypotheses, which are
evaluated in a depth-first manner. The validation of rejection of a hypothesis
depends heavily on the presence or absence of beacons [10].

Soloway and Ehrlich [8] observed that a top-down strategy is used when the
source code or type of source code is familiar. They also noted that
experienced programmers use beacons, programming plans, as well as rules
of programming discourse in order to decompose goals and plans to a lower
level. Furthermore, it was observed that delocalized plans complicate
program comprehension, as they involve finding causal interactions between
non-contiguously located pieces of source code.

2.2.3 Knowledge-Based

Letovsky [15] suggested that programmers are opportunistic processors,
capable of understanding programs using either a bottom-up or top-down
approach, depending on the cues available. His theory has three components:
a knowledge base, which encodes the programmer’s expertise and knowledge
about the application; a mental model, which represents the programmer’s
current understanding of the program; and an assimilation process, which
explains how the mental model evolves using the knowledge base and
information about the program.

Inquiry episodes are an essential part of the assimilation process. During such
an episode, a programmer asks a question, forms a hypothesis, and searches
through the source code and documentation to validate or reject the
hypothesis. Inquiry episodes often happen as a result of delocalized plans.

4 DRDC Valcartier TM 2006-732

2.2.4 Systematic and As-Needed

In [16], Littman et al. observed programmers enhancing a personnel database
program. They noted that the programmers either read the source code
systematically, tracing the control and data flow dependencies in order to
acquire a general understanding, or used an as-needed approach, focusing
only on the source code related to the task to achieve. The subjects using a
systematic approach gained information about the structure of the program
and the interactions between its components at run-time. The ones who used
an as-needed approach only acquired static knowledge, resulting in a weaker
mental model compared to the one of the other subjects. They also made
more errors, as they did not identify the dynamic interactions between the
components.

Soloway et al. [9] combined these two theories as macro-strategies in order to
understand programs at a more global level. Using this strategy, the
programmer traces the flow dependencies for the whole program and
performs simulations as the source code and documentation are read.
However, this method is not applicable for programs of considerable size. In
the more commonly used approach, programmers examine only what they
consider relevant. The drawback of this approach is that more mistakes can
be made, since important interactions can be missed.

2.2.5 Integrated Metamodel

Based on the results of experiments, Von Mayrhauser and Vans combined the
previous approaches into a single metamodel [17]. They suggested that
understanding is built at several levels of abstractions, by freely switching
between the different comprehension strategies. Their model is composed of
four components. The first three detail the comprehension processes used to
create the mental representations at different levels of abstractions. The fourth
component describes the knowledge base used to carry out the
comprehension process. In their integrated metamodel [17]:

• The top-down approach is invoked as an as-needed strategy, when the
source code or programming language is familiar. It uses the domain
knowledge as a starting point for the formulation of hypotheses.

• The program model, which is a control flow abstraction, is invoked when
the source code and application are completely unfamiliar.

• The situation model, which describes the data flow and functional
abstractions in a program, is developed after a partial program model has
been formed using systematic or opportunistic strategies.

• The knowledge base contains the information required to build these
three cognitive models. It stores the programmer’s current knowledge as
well as the one acquired and inferred during the comprehension process.

DRDC Valcartier TM 2006-732 5

3. Factors Affecting Comprehension

The wide variety of cognitive models discussed previously stems from the fact that
certain factors will affect how a programmer tackles a comprehension task [18, 19].
These factors are the program under study, the characteristics of the programmer, as
well as the comprehension task to achieve. These factors are discussed next, as
summarized by Storey [7].

3.1 Program Characteristics

As one would normally expect, programs which are well designed and documented are
easier to understand than badly designed and documented ones. However, the
programming language in which an application is written also affects comprehension,
as was shown is Pennington’s experiment [14].

Object-oriented languages are often perceived to offer a more natural correspondence
with real world problems, due to the inheritance and association relationships [20].
However, others argue that object-oriented programs are difficult to understand, as
they involve a very strong delocalization of plans: a plan may be distributed through
several procedures, each attached to a different class [20].

3.2 Individual Programmer Differences

With experience, programmers recognize which strategy is the most efficient for a
given program and comprehension task [11]. Détienne also observed that experienced
programmers make more use of external devices as memory aids [20]. Furthermore, in
[21], Vessey noted that they tend to reason about programs according to both
functional and object-oriented relationships, as well as consider algorithms, while
programmers with less experience tend to focus on objects. These observations
highlight the fact that program comprehension tools should enhance or ease the
programmer’s preferred strategies, rather than impose a fixed one, which may not
always be suitable [11].

Although experience influences the comprehension strategy adopted by a programmer,
it is not the only factor to consider when elicitating requirements for a supporting tool.
For example, programmers’ ability and creativity, which cannot simply be measured
by their experience, also affect how they will address a comprehension task [7].

3.3 Task Variability

Program comprehension is not an end goal by itself. On the contrary, it is the
necessary first step towards the realization of other objectives, such as correcting a
fault, reusing source code, or adding functionalities to a software system. The type and
scope of the end objective will influence the comprehension process followed by a

6 DRDC Valcartier TM 2006-732

programmer. For example, a simple task might only require understanding a small
portion of source code, while a more complex one might necessitate taking into
account global interactions. As a result, the programmer will have to acquire an in-
depth comprehension of the causal relationships for the whole program [7].

In [14], Pennington explained that when a programmer has to perform a task which
necessitates recall and comprehension, he or she will form a program model, i.e., the
sequence of operations of the program. In the case the task requires making a
modification to a program, the programmer will form a situation model, which
incorporates knowledge about the data flow and the functional abstractions.

A task which involves the reuse of source code requires that a programmer first
understands the problem to solve. Then, a suitable solution has to be retrieved from the
existing source code and adapted to the current problem. The mapping of the problem
to the solution is often done using analogical reasoning [20] and might involve
iterative searching through many possible solutions [7].

DRDC Valcartier TM 2006-732 7

4. Cognitive Models and Tool Implications

In this section, the requirements that comprehension tools should implement are
presented in general terms. It should be noted that they should be fine-tuned for the
specific settings in which the tool implementing them is deployed. These
requirements, as reviewed by Storey [7], are based on the cognitive models introduced
in Section 2.

4.1 Browsing Support

Browsing allows programmers to navigate through the source code, according to the
dependencies between the different software elements, such as the definitions of
variables, methods, classes and their use. Since definitions and uses may be distributed
over distant parts in the source code, browsing accelerates the navigation and lessens
the effort needed for software comprehension [22].

Both the top-down and bottom-up comprehension models necessitate browsing
support. On the one hand, the top-down cognitive model requires browsing the source
code of an application, by starting with the high-level abstractions or concepts and
going down to the lower level details, using the presence of beacons. On the other
hand, bottom-up comprehension necessitates tracking the control and data flow chains
in order to form both the program and situation models.

For the integrated metamodel, both top-down and bottom-up browsing should be
supported, as the strategy used depends on the available cues. Also, having both
breadth-first and depth-first browsing support available should alleviate the difficulties
posed by delocalized plans introduced by object-oriented languages.

4.2 Searching

While browsing is an exploratory strategy, without a fixed endpoint and relatively
unstructured, searching is a planned activity with a specific goal. An example of
searching is to look for pieces of source code, as in the case of a code reuse task, or
when enquiring about the role of a variable, method, or class in a program.

4.3 Multiple Views

A comprehension tool should provide different views of a program under study. It
should offer static views, which show the structure of a system, in particular, the kinds
of things that exist, e.g., classes, their internal structures, and their relationships to
other things [23]. To complement the static views, dynamic views should also be
provided. These views show the behavior of a system, such as the objects and threads
that exist at run-time, as well as the method invocations between them.

8 DRDC Valcartier TM 2006-732

4.4 Context-Driven Views

In addition to provide multiple views, the tool should also offer the possibility to select
the view which is the most appropriate to the current context. For example, in the case
of an object-oriented program, it is generally more suitable to display the inheritance
hierarchy as the initial view. However, in the case the structure of the latter is rather
flat, the user may prefer to first view the call graph [7].

DRDC Valcartier TM 2006-732 9

5. Tool Requirements Explicitly Identified

The previous section enumerated in general terms the functional requirements a
program comprehension tool should have. In this section, specific requirements for
comprehension tools are listed. This list comes from [7], in which the efforts
conducted by several researchers are surveyed.

5.1 Biggerstaff

In [24], Biggerstaff et al. mention that the main challenge in software understanding is
the concept assignment problem, i.e., the mapping of source code elements to their
corresponding requirements. Even though automated techniques can assist in the
location of programming concepts and features in the source code, the difficulty comes
from automatically locating human oriented concepts. According to Biggerstaff, the
most important functional requirements for comprehension tools are queries, graphical
views, and hypertext.

5.2 Von Mayrhausser and Vans

Following their research on the integrated metamodel, Von Mayrhausser and Vans
determined basic information needs for reverse engineering tasks [17]. They also
suggested some functional requirements to satisfy them, according to the different
models [17]:

• Top-Down Model: On-line documents with keyword searching capacities; call
graph pruning based on specific categories; smart differencing features; browsing
of locations history; entity fan-in.

• Situation Model: Complete list of domain sources, including non source-code
based; visual representations of most important domain functions.

• Program Model: Pop-up declarations; online cross-referencing reports; function
counting.

5.3 Singer and Lethbridge

In [25], Singer et al. observed the work practices of software engineers in a company.
Their study was conducted at the individual, group, and company-wide levels.
Following their observations, they recommended that a tool should support “just-in-
time comprehension of source code.” This recommendation was based on the fact that
engineers tend to forget quickly the specificities of a program part when moving to
another one. This constrained them to comprehend again this part when it was needed
by the task they had to accomplish. To support just-in-time comprehension, a tool
should offer the following functional requirements [25]:

10 DRDC Valcartier TM 2006-732

• The capacity to search through the source code by either specifying names or
patterns.

• The capacity to display the pertinent attributes of the elements retrieved by a
search as well as the relationships between them.

• Features to store persistently the searches and problem-solving sessions and
support their navigation.

These requirements were implemented in the tkSee tool, which became used by the
company's engineers.

5.4 Erdös and Sneed

Following many years spent in the industry doing maintenance and reengineering
work, Erdös and Sneed implemented a tool to support the maintenance of applications
for which programmers had an incomplete understanding. The tool provided answers
to the following questions, proposed by Erdös and Sneed in such situations [26]:

1. Where is a partial subroutine/procedure invoked?

2. What are the arguments and results of a function?

3. How does control flow reach a particular location?

4. Where is a particular variable set, used or queried?

5. Where is a particular variable declared?

6. Where is a particular data object accessed?

7. What are the inputs and outputs of a module?

It should be noted that today’s IDEs (e.g., Eclipse [27], Visual Studio 2005 [28]) offer
functionalities which provide answers to most of the above questions.

DRDC Valcartier TM 2006-732 11

6. Limitations of Existing Tools

As mentioned in the introduction, in a previous phase of the OASIS project, a state-of-
the-art-survey on the current techniques and tools for architecture recovery and
comprehension was carried out [5]. The limitations of the tools surveyed are discussed
next.

6.1 Multi-Language Support

Source code based architecture recovery is derived from parsing which provides static
structural information about the source code to be analyzed. There exist several
techniques that can be applied on the parsed information to extract further
dependencies in the source code to support the architecture recovery and
comprehension process. However, most of the parsers of the currently existing tools
support systems written in a single programming language [5].

6.2 Static Analysis Support

Analytical support is essential to comprehend source code and implementation
dependencies. However, the vast majority of the architectural recovery tools surveyed
lack detailed analytical support. Their analysis functionalities are mainly static and
limited to standard high-level dependencies and metrics. According to the author of
the survey, the integration of additional techniques, such as concept analysis, would be
beneficial for architecture comprehension. Furthermore, the extraction, grouping, and
clustering of the available information from knowledge bases would also benefit from
a more detailed analysis of the dependencies among the different source code
components [5].

6.3 Dynamic Analysis Support

An increasing part of today’s legacy software systems are object-oriented and/or
distributed [5]. The use of constructs such as inheritance, polymorphism, and dynamic
binding results in the fact that the exact behavior of a system is only known at run-
time. Under these circumstances, static analysis alone is insufficient to recover and
comprehend the architecture of a subject system. It has to be complemented by
dynamic analysis. Unfortunately, most current architecture recovery tools focus on
static analysis of source code, which therefore limits their applicability for the
architectural recovery of object-oriented and distributed legacy systems [5].

6.4 Dynamic Visualization and Abstraction

The graphical descriptions of software architectures generated by current tools often
focus on static calls and data relationships gathered by parsing the source code. These

12 DRDC Valcartier TM 2006-732

types of architecture graphs can exhibit extremely high connectivity and possess little
contextual information with respect to the nature of the relationships between
components [5]. Dynamic visualization is useful to understand higher-level system
behavioral characteristics that cannot be determined from static architectural views.
Some existing tools support dynamic visualization and structure querying, but at the
object level. Therefore, the visualizations they provide are hard to scale and interpret
for large and distributed applications [5].

6.5 Domain Knowledge

The last limitation that was identified in the state-of-the-art-survey is that the current
tools do not offer functionalities to incorporate domain and user knowledge about a
software system. Such knowledge is required to reconstruct and understand an
application at the architectural level, as it allows mapping source code elements to
their corresponding operational concepts.

DRDC Valcartier TM 2006-732 13

7. OASIS Functional Architecture

As mentioned in Section 4, the requirements a comprehension tool should implement
depend on the specific objectives to be achieved by its users. In the present case, the
objective of the OASIS project is to reduce the time needed to comprehend systems to
be integrated into a SoS. Therefore, the technical solutions developed as part of
OASIS should assist in performing comprehension tasks at the architectural level with
a focus on systems interoperability.

Figure 1. OASIS Functional Architecture

The above figure shows a visual representation of the OASIS functional architecture.
As indicated, it consists of the following subsystems: Repositories, Data Access,
Information Management Services, Fact Extraction, Analysis, Synthesis,
Visualization, Documentation Generation, Comprehension Process, and Graphical
User Interface. The functionality of each of these subsystems and their related service
groups are further described in the remaining sections of the present document.

The OASIS functional decomposition was designed with the goal of recovering and
comprehending the architectures of military applications written in C++ or Java and
consisting of more than 1,000 classes. It takes into consideration the requirements for
comprehension tools identified in Section 4 and 5, as well as the results of the

14 DRDC Valcartier TM 2006-732

qualitative study conducted by Charland et al. [6]. It also addresses the limitations of
existing tools outlined in Section 6.

7.1 Repositories

In order to understand an existing software system, one needs to have access to
different types of information. In the course of the comprehension process, additional
information will also be generated. This information needs to be stored persistently in
repositories. The OASIS functional architecture contains four such repositories, which
store respectively the source code, facts, models and diagrams, as well as the
documents associated with the software system under study. These repositories are
logical ones and will not necessarily be implemented as databases.

7.1.1 Source Code

Most high-level reverse engineering analysis and architecture recovery
activities are based on the software system source code. It is therefore one of
the types of information which has to be stored in the repositories. There exist
different mechanisms to manage source code and its associated files. These
are described next.

7.1.1.1 File System

Using the operating system’s file system to manage source code is the most
simplistic approach, both in terms of implementation and functionality
provided. It limits the amount of metadata that can be associated with a
source code file. The specific metadata elements are determined by the file
system, but usually consist of fields such as the file owner and the date of the
last modification. These elements can be used to assist with the
comprehension of a software system, but this information if often lost when
the source code is transferred to another computer, as the date of the last
modification will be set to the date of the copying [29]. This approach is also
limited by the fact that only the latest version of the source code is stored, as
the history of changes made to source files is not captured.

7.1.1.2 Versioning Systems

Versioning systems such as CVS (Concurrent Versions System) [30] provide
additional information over the file system approach. As implied by the
name, they keep track of all changes in a set of files. A complete version of
the source code is checked-out when needed by a programmer, and later
checked-in when the work on the copy is completed. Information typically
stored by versioning systems includes the author of the modification, the date,
and comments about the revision.

DRDC Valcartier TM 2006-732 15

The information provided by versioning systems can be useful when trying to
understand an unfamiliar software system. For example, in [31], the CVS
history of a repository is analyzed to extract information regarding the nature
of the collaboration between team members. In [32], the change history is
used to locate the merging and splitting of files and functions in procedural
code. The objective is to recover information about the intent of a design
change.

7.1.1.3 Integrated Development Environments

Integrated development environments (IDEs) such as Eclipse [27] can be seen
as a complementary approach over the previous two, since they can be used
with both. Although IDEs do not supply additional information to assist in
understanding an unfamiliar software system, they provide functionalities to
access its source code. These functionalities can in turn be used by a
developer implementing a tool for architecture recovery and comprehension.

In Eclipse, the source code can be imported from a file system or CVS
repository. Once imported, the Eclipse application programming interface
(API) can be used to access the source code elements. For example, as part of
the Java Development Tools (JDT) subproject, Eclipse has a Java model. In
this model, compilation units, which implement the ICompilationUnit
interface, represent Java source files. This is illustrated in Figure 2 below.

Figure 2. Eclipse Java Model

16 DRDC Valcartier TM 2006-732

From the compilation units and using various interfaces (e.g.,
IPackageDeclaration, IImportDeclaration, IType, IField, and
IMethod), the other elements declared in source files can be accessed, as
shown in Figure 3. This allows developers implementing architecture
recovery and comprehension tools to access the different elements of the
source code.

Figure 3. Eclipse Java Model at the Source Code Level

7.1.2 Facts

The Facts repository contains the basic facts about a subject system, at a low
level of abstraction. These facts are usually extracted using, for example,
lexical or parser-based tools, in the case of static information, or profiling
tools for dynamic information. As each tool usually has its own specific data
schema, the interoperability between tools is limited and often restricted to
the use of a standard exchange format, such as the Graph eXchange Language
(GXL), to describe the schema in the case of graph-based tools.

The Object Management Group (OMG) Architecture-Driven Modernization
(ADM) Task Force [33] is looking at the above interoperability problem. It
aims at producing a set of standards to describe information that can be
extracted from existing systems to support modernisation efforts and facilitate
interoperability between tools. However, there will always be existing tools to
be integrated within OASIS that will not follow such a standard when it will
become available. Therefore, the present functional architecture has a
mechanism, described in more detail in Section 7.2 and 7.3, to allow existing
tools to be integrated within OASIS using their own data schema.

DRDC Valcartier TM 2006-732 17

7.1.3 Models and Diagrams

This repository stores persistently the diagrams, their models, as well as the
associated metamodels, that are generated during the software architecture
recovery and comprehension process. Examples of such diagrams are the
ones contained in the UML specification. The relationships between a
metamodel, model, and diagram are explained next and illustrated in Figure
4.

A metamodel is an explicit model of the constructs and rules needed to build
specific models within a domain of interest. For example, in UML, the
metamodel defines the complete semantics for representing models using
UML. In the case of a class diagram, the metamodel contains elements such
as class, property, and operation. A class model would contain
instances of those elements such as ClassX has PropertyA and
OperationB, and is a subclass of ClassA. Finally, the class diagram would
store the graphical location of each of the previous model’s elements.

Figure 4. Relationships between Metamodels, Models, and Diagrams

18 DRDC Valcartier TM 2006-732

7.1.4 Documents

The last repository of the OASIS functional architecture contains the
documents associated with a software system under study, as the
documentation about a legacy system can help in recovering and
understanding its architecture. However, very often, the system’s
documentation is of poor quality and outdated [34]. In such cases, the
Documentation Generation subsystem described in Section 7.8 attempts to
derive the documentation from source code.

7.2 Data Access

The Data Access subsystem handles the mapping of low level data elements to higher
level constructs. This supports the goal mentioned in section 7.1.2, i.e., to allow
different tools to use their own data schema to persistently store information. The
service groups of the present subsystem provide functionalities to define and transform
data elements to conform to the data schema formats of the different tools to be
integrated.

7.2.1 Data Object Definition

To allow different tools integrated within OASIS to interoperate, their data
elements must be compatible. If they all use the same exchange model, such
as the one described in section 7.3.1, data object definition consists of
mapping it to the persistence technology used. For example, if a relational
database is used to persistently store the data elements, a tool such as
Hibernate [35] could be used to generate the corresponding database schema.

In the case where the tools to be integrated each have a different exchange
model, the definition of data objects is more difficult. For example, some data
elements can be stored in a relational database, while others are contained in
an eXtensible Markup Language (XML) file. In such circumstances,
transformation functions must be created to allow mapping between one
format to another. An example of a tool which performs such transformation
functions is Altova MapForce [36]. As illustrated in Figure 5 on the next
page, it allows to visually define mappings between different formats such as
XML and relational databases, and graphically create the required
transformation functions.

DRDC Valcartier TM 2006-732 19

Figure 5. Altova MapForce [36]

To solve the problem of uniquely identifying information elements
originating from different tools, the OASIS functional architecture uses the
concept of Enterprise IDentifier (EID), as defined in [37]. Using this
approach, each information element is given an identifier of the same size
that is guaranteed to be unique. This uniqueness is achieved by giving each
information producer a seed identifier which will form the prefix of the EID.
When an information element is created, the producer typically concatenates
its seed identifier with a sequence number to generate the EID. Figure 6
below, adapted from [37], illustrates the composition of 64-bit long EID.

1 32 1 32...

32-Bit EID Seed 32-Bit Local Sequence

64-Bit EID

EID Prefix EID Suffix

Figure 6. Enterprise Identifier Composition

This scheme supports up to 232 (approximately 4.3 billion) information
producers, which can each produce 232 information elements.

7.2.2 Marshalling

Marshalling consists of pulling, from the repositories, information elements,
packaging them into a data object, and then sending it to the information
consumer that requested it. The implementation of this functionality is
usually provided by the tool used for the definition of data objects. For

20 DRDC Valcartier TM 2006-732

example, Hibernate provides an API to load objects which have been
persistently stored.

7.2.3 Unmarshalling

Unmarshalling is the opposite of marshalling. It consists of separating a data
object into its constituent information elements and storing them in their
corresponding repository. As for marshalling, the implementation of this
functionality is provided by the data mapping technology used.

7.3 Information Management Services

Information Management Services are the top level subsystems of the OASIS
functional architecture infrastructure. The others are the Repositories and Data Access,
which were previously described in Section 7.1 and 7.2. Information Management
mostly provides services to integrate a tool within OASIS and use the Repositories and
Data Access subsystems.

7.3.1 Exchange Model Definition

Exchange models are the foundations for the other services provided by the
functional architecture infrastructure. Before a tool can be integrated within
OASIS, either by developing it or by reusing an existing one, its exchange
model must be defined. For example, if a tool generating call graphs would
have to be incorporated within OASIS, an exchange model similar to the one
shown in Figure 7 below would first need to be defined.

NamedElement
+name : String

Package MethodType Parameter0..*0..*
0..*

returnType calls

Class

type

Interface Datatype

Figure 7. Exchange Model for a Call Graph

Once defined, the Data Object Definition service group could then generate
its corresponding relational model and store it persistently into a database.
This model could also be used by other subsystems, e.g., Visualization, which
need to operate on call graphs. Furthermore, other information management

DRDC Valcartier TM 2006-732 21

services could retrieve and store instances of this exchange model without
having to deal with the intricacies of the persistence mechanism used.

7.3.2 Browsing

Browsing consists of exploring a body of information, based on the
organization of the collections or scanning lists, rather than by direct
searching [38]. In the present case, browsing is performed by two kinds of
actors: users trying to understand an unfamiliar software system and
developers who want to extend the functionalities of OASIS.

The information contained in the repositories which is of most interest for the
developers are the exchange models. When integrating a tool producing
information in OASIS, a developer would first browse the available exchange
models to see if there is one which already exists for the information provided
by the tool. For example, the exchange model displayed in Figure 7 could be
used by another tool producing call graphs for a different object-oriented
programming language. For a developer integrating or developing a new
information consumer, the browsing functionality would also allow to search
for exchange models providing the information required by the tool.

In the case of users trying to understand an unfamiliar software system, they
are rather interested in the actual instances of the information elements stored
in the different repositories. This functionality can be seen as a basic tool to
facilitate system understanding when there are no visualization technique
available for certain types of information. Also, when several users are trying
to understand the same system in a multi-user environment, browsing can be
used to explore the information produced by others.

7.3.3 Querying

Querying is the process of retrieving information elements from a repository
matching a set of criteria. An example of a criterion could be the method
name of an instance of the exchange model displayed in Figure 7. Using
pseudo-code, this criterion could be written as callgraphmodel.method.
name, where callgraphmodel is the name of the call graph.

Multi-criteria querying is used to reduce the amount of information retrieved.
A multi-criteria example could be the method and package name of an
exchange model instance. Using pseudo-code again, these criteria could be
expressed as callgrahmodel.method.name and callgrahmodel.
package.name.

22 DRDC Valcartier TM 2006-732

7.3.4 Publishing

Publishing is the main activity performed by information producers with
respect to repositories. It consists of storing persistently the information
contained in an instance of an exchange model. Upon publication, it becomes
available to all the tools using the information contained in the repositories.

7.3.5 Subscription

The Subscription service can be seen as standing queries. Whenever
information is stored in the repositories via the Publishing service, it is
compared with user or tool specified criteria previously entered. If there is a
match, it is forwarded, for example, to the user who requested it. The
Subscription service allows to dynamically display or analyze information as
it is produced. Also, in a multi-user environment, users can be notified of the
information produced by others.

7.4 Fact Extraction

Fact extraction consists of finding pieces of information about a system. It is a
fundamental step of reverse engineering and architecture recovery techniques and as a
result, has often to be performed first [39]. This means that before any high-level
reverse engineering analyses or architecture recovery activities can be performed,
available information about a system has to be extracted and aggregated in a fact base.
Such a fact base forms the foundation for further analysis tasks that are conducted
next, either manually or (semi)-automatically using tools [39].

Fact extraction can either be static or dynamic. The functional architecture of OASIS
supports both, as explained in the next two sections.

7.4.1 Static Fact Extraction

Static fact extraction provides information which is obtained by observing
only the artifacts of a system [40]. A common technique for extracting static
facts from source code is parsing.

7.4.1.1 Parsing

Informally, a parser is a program which receives input in the form of source
code instructions and breaks them into parts such as objects, methods, and
attributes [39]. This collected data, as well as the dependencies among the
extracted entities, e.g., inheritance and association relationships, are then
added to a fact base.

More formally, parsing transforms source code into a data structure, usually a
tree, which is suitable for later processing and captures the implied hierarchy

DRDC Valcartier TM 2006-732 23

of the source code. A parser generally operates in a two-stage process. First, it
identifies the tokens in the source code and then builds a parse tree using
them.

A token is a categorized block of text, usually consisting of indivisible
characters known as lexemes. Examples of tokens include literals, operators,
and identifiers. A lexical analyzer initially reads the lexemes and categorizes
them according to function, giving them meaning. This assignment of
meaning is known as tokenization. A parse tree, or concrete syntax tree, is
then generated from these tokens. A parse tree represents the syntactic
structure of the source code according to a grammar.

In the context of OASIS, an abstract syntax tree (AST) is used instead of a
parse tree. In a parser, an AST is an intermediate between a parse tree and a
data structure. The latter is often used as a compiler or interpreter's internal
representation of a computer program, while it is being optimized and from
which code is generated.

An AST captures the essential structure of the source code in a tree form,
while omitting unnecessary syntactic details. It differs from a parse tree by
excluding nodes representing punctuation marks, such as the semi-colons
terminating statements or the commas separating method arguments. It also
omits tree nodes representing unary productions in the grammar. These
omissions are represented by the structure of the AST [41].

Figure 8 below shows the AST of the Java source code displayed in Figure 9.

Figure 8. View of an Abstract Syntax Tree

24 DRDC Valcartier TM 2006-732

Figure 9. Java Source Code

7.4.1.2 Decompilation

In the cases where the source code of a system is not available, parsing
cannot be performed. In these circumstances, the decompilation of the binary
code has to be carried out instead.

A decompiler, or reverse compiler, is a program which attempts to perform
the inverse process of the compiler. Given an executable program compiled
using a high level programming language, the objective is to generate a high
level language program which performs the same function as the executable
program [42].

Decompiling executable programs is not a trivial task, as one faces several
difficulties. The main problems are the separation of data and code, the
reconstruction of control structures, and the recovery of high-level data types
[43]. Also, any meaningful names given by programmers to variables and
methods to facilitate their identification are not usually stored in an
executable file. Therefore, they cannot be recovered by the decompiler.
Another problem is the great number of subroutines introduced by the
compiler [42]. To set up its environment and for runtime support, the
compiler includes subroutines. These are usually written in assembler and
most of the time, cannot be translated into a high level language. In addition,
library routines, written either in the compiler language or in assembler, are
also included by the linker. As an example, a “hello world” program
compiled in C generates 23 different procedures [42]. To improve the

DRDC Valcartier TM 2006-732 25

decompilation process, decompilers make use of knowledge about certain
compilers and libraries used in the compilation of the file to be decompiled
[43].

One case for which the decompilation is somewhat easier is Java. The reason
is that Java bytecode is relatively high-level and is guaranteed to be well-
formed and well-typed due to verification constraints [44]. Therefore, it
provides an ideal basis for decompilation back to Java source code. Another
reason why decompiling bytecode is easier is that the most usual way of
producing class files is to use Sun’s javac compiler, which has specific
compilation patterns [45]. However, decompiling Java bytecode has been
complicated by the fact that there is an increasing number of compilers that
can generate bytecode for other languages (e.g., AspectJ and C), as well as by
the use of bytecode optimizers and obfuscators. These produce faster and/or
smaller class files in the first case and classes which are hard to decompile
and understand in the latter. Although the bytecode generated by these tools
is both correct and verifiable, it is much more complex than the one produced
by javac [44].

7.4.1.3 Build File Parsing

After a software system has been designed and implemented, it has to be
configured, compiled, and linked for the particular environment in which it
will be deployed [46]. For small systems developed for a unique platform, the
make utility and a single Makefile, for example, are usually sufficient for
system building. However, in the case of large and complex systems running
on multiple platforms and supporting several functional configurations, the
build process is more complicated.

Since the systems to be analyzed by the OASIS project will be large scale
military applications, their configuration and built-time properties should be
extracted from build management artifacts, such as build and configuration
files [46]. Having the compilation dependencies between the compilation
units of a system, the time-sequence configuration of the compilation
procedure, as well as knowing which portions of source code are
automatically generated at build time would provide valuable insights for the
comprehension of an unfamiliar system.

The software systems to be analyzed will be military applications developed
in C++ or Java. Therefore, examples of build file formats that should be
supported would be Makefile [47] and Visual Studio Solution files for C++,
and Ant files [48] in the case of Java.

7.4.1.4 Database Schema Extraction

Most software systems for business and industry are information systems, i.e.,
they maintain and process vast amounts of persistent data using database

26 DRDC Valcartier TM 2006-732

platforms [49]. This persistent data typically corresponds to the application
domain elements whose values are relevant for the organization’s business
goals [50]. Data analysis is therefore a crucial step to identify the central
business objects in a software system.

The objective of the Database Schema Extraction service group is to recover
conceptual data models from physical databases. A conceptual model is
expressed as an entity relationship (ER) schema, which consists of entity
types, relationship types, attributes, as well as the various properties and
constraints which translate the concepts and structures of the application
domain [51]. This model should be structurally complete and semantically
annotated. However, in most cases, important information about the data
model is missing in the physical schema catalog extracted from the database
[49]. Therefore, even though the Database Schema Extraction service group
can provide support for extracting the schema catalog and reduce the effort
spent in this phase, data analysis is a human-intensive activity and cannot be
fully automated. It requires significant amount of experience and skills, as
well as access to users and domain experts that can often contribute with
valuable knowledge [49]. However, it has the potential to be a major aid in
searching, collecting, and combining indicators for structural and semantic
schema constraints, as well as to provide guidance from an initially
incomplete data model to a complete and consistent result [49].

7.4.2 Dynamic Fact Extraction

Dynamic fact extraction provides information which is obtained by observing
the system during execution [40]. As mentioned in Section 6, the
heterogeneity and dynamism of today’s software systems make it difficult to
comprehend them outside the actual time and context in which they execute
[52]. Therefore, architectural recovery cannot rely only on static information.
It must be complemented by dynamic analysis, such as the exchange of
control and data between the various components at run time. This
information increases the level of precision provided by the static analysis
and as a result, improves understanding. In general, when collecting dynamic
information about a set of executions, one is interested in collecting
information for some specific entities in the code (e.g., method calls and
paths) and in a subset of the program (e.g., in a specific module or set of
modules) [53].

7.4.2.1 Instrumenting

One technique commonly used to collect information about a system behavior
is instrumentation. As opposed to general-purpose program transformations,
instrumentation only aims to gather additional information about a system,
rather than modify its original structure and behavior, allowing therefore only
minor side effects, such as increases in execution time or changes to the log
file [54]. As an example, Java bytecode instrumentation uses structural and

DRDC Valcartier TM 2006-732 27

semantic information provided by the language and platform specifications to
both identify instrumentation points as well as avoid affecting the original
program structure and behavior [54]. Such instrumentation does not remove
program elements (e.g., classes, fields, and methods). Variables defined by
the original program may be read but not written. Instrumentation may add its
own variables, even to existing program elements (e.g., new fields or local
variables), and those variables may be read or written by it. Instrumentation
may also insert new code into original program methods, and invoke other
methods from this code, provided that original variables are not modified as a
result of these invocations. Finally, instrumentation may outline code, i.e.,
move all or part of the method code into a new method and replace it in the
original method with the invocation of the new one [54].

Once executed, an instrumented program generates an execution trace, which
can be defined as a record of the sequence of instructions executed that often
takes the form of a list of code labels encountered [55].

There are two different kinds of instrumentation: source and binary. In the
first case, trace statements are added into the source code of an application. In
the second one, trace statements are inserted into binary code, which includes
applications as well as dynamic and shared libraries. Instrumenting source
code is easier than binary code, as one can work in a high-level language.
However, the disadvantage is that after it has been instrumented, the modified
source code has to be recompiled in order to be able to execute the tracing
statements and therefore, extract dynamic information.

Due to the additional overhead for recompiling instrumented source code and
the fact that the objective of the OASIS project is to recover and comprehend
the architecture of large scale military software systems consisting of more
than 1,000 classes, the present functional decomposition only considers
binary instrumentation. The Instrumentation service group allows users to
specify (1) the types of entities to instrument, (2) the parts of the code in
which those entities must be instrumented, and (3) the kind of information to
collect from the different entity types [56].

Figure 10 on the next page shows a sample Java program which prompts for a
number and prints its factorial.

28 DRDC Valcartier TM 2006-732

import java.io.*;

public class Factorial {
 private static BufferedReader in = new BufferedReader(new
 InputStreamReader(System.in));

 public static final int fac(int n) {
 return (n == 0)? 1 : n * fac(n - 1);
 }

 public static final int readInt() {
 int n = 4711;
 try {
 System.out.print("Please enter a number> ");
 n = Integer.parseInt(in.readLine());
 } catch(IOException e1)
 { System.err.println(e1); }
 catch(NumberFormatException e2)
 { System.err.println(e2); }
 return n;
 }

 public static void main(String[] argv) {
 int n = readInt();
 System.out.println("Factorial of "+ n + " is " +
 fac(n));
 }
}

Figure 10. Java Source Code [57]

Figure 11 displays the resulting bytecode when the above Java source code is
compiled and Figure 12, the bytecode after it has been instrumented using the
Byte Code Engineering Library (BCEL) [57].

0: iload_0
1: ifne #8
4: iconst_1
5: goto #16
8: iload_0
9: iload_0
10: iconst_1
11: isub
12: invokestatic Factorial.fac (I)I (12)
15: imul
16: ireturn

Figure 11. Java Bytecode [57]

DRDC Valcartier TM 2006-732 29

0: sipush 4711
3: istore_0
4: getstatic java.lang.System.out Ljava/io/PrintStream;
7: ldc "Please enter a number> "
9: invokevirtual java.io.PrintStream.print (Ljava/lang/String;)V
12: getstatic Factorial.in Ljava/io/BufferedReader;
15: invokevirtual java.io.BufferedReader.readLine ()Ljava/lang/String;
18: invokestatic java.lang.Integer.parseInt (Ljava/lang/String;)I
21: istore_0
22: goto #44
25: astore_1
26: getstatic java.lang.System.err Ljava/io/PrintStream;
29: aload_1
30: invokevirtual java.io.PrintStream.println (Ljava/lang/Object;)V
33: goto #44
36: astore_1
37: getstatic java.lang.System.err Ljava/io/PrintStream;
40: aload_1
41: invokevirtual java.io.PrintStream.println (Ljava/lang/Object;)V
44: iload_0
45: ireturn

Figure 12. Instrumented Java Bytecode [57]

7.4.2.2 Profiling

Profiling injects instrumentation statements into the binary code of a software
system to analyze the performance and resource utilization of its execution. It
is useful for comprehension, as it allows identifying the portions of its source
code which dominate execution time. It is also useful to get an understanding
of the complex iterations between the source code, third-party libraries,
operating system, hardware, networks, and other processes.

Figure 13 and 14 displayed next are two examples of profiling information
that could be generated by the OASIS tool. They were produced using the
Test and Performance Tools Platform (TPTP) Eclipse project [58].

Figure 13 shows the Coverage Statistics view of TPTP. It displays, for each
class of the application, in this case, JUnit [59], its corresponding package,
the number of times its methods were executed (Calls), the number of its
methods which were executed (Methods hit) and not executed (Methods
missed), as well as the ratio between the last two (% Methods hit).

30 DRDC Valcartier TM 2006-732

Figure 13. TPTP Coverage Statistics View

Figure 14 contains three pie charts generated by TPTP using the Business
Intelligence and Reporting Tools (BIRT) charting library [60]. All three are at
the package level and respectively list the top 10 packages in terms of base
time, cumulative time, and number of calls, for a particular program
execution.

Figure 14. TPTP Execution Information Report

In the previous figure (Figure 14), the base time represents the time spent
executing methods inside a package, excluding the time spent in other
methods called by them. The cumulative time corresponds to the time the
methods of a package spend on the execution stack, including both the time

DRDC Valcartier TM 2006-732 31

spent in the methods themselves and in the other methods they call. Finally,
the number of calls counts the methods called by each package.

7.4.2.3 Monitoring

Like profiling, monitoring also instruments the binary code of a system. The
objective is to observe its execution for the occurrence of specific events in
real-time. Examples of events could be disk, database, or network access.
Monitoring those events would further expand the knowledge about a system
under study, as it could allow exploring its behavior and more precisely, the
mechanisms it uses for interoperability.

Figure 15 displays a screen shot of the FileMon utility [61] from Microsoft.
FileMon monitors and displays file system activity on a system in real-time.
For the OASIS tool, functionality similar to this one should be implemented
for file monitoring. For each request (e.g., open, read, write, or close), the
responsible process as well as the path of the file being requested would be
listed.

Figure 15. FileMon for Windows

7.5 Analysis

The Analysis subsystem relates to the separation of a system into its component parts.
More specifically, it provides techniques to [62]:

32 DRDC Valcartier TM 2006-732

• Separate a system into its constituent parts, in order to identify or classify the
elements of communication.

• Make explicit the relationships among those elements to determine their
connections and interactions.

• Recognize the organizational principles of the arrangement and structure that
hold these elements together.

7.5.1 Software Metrics

A metric measures a property of a piece of software or its specifications. The
OASIS functional architecture provides an extensive set of metrics, as it has
been shown that they can provide guidance in analyzing the quality of the
design and source code of a system, as well as its possible maintainability and
comprehension [63]. The following list of metrics comes from [64], and each
of them falls within one of the following three categories: size, complexity, or
object-oriented.

Size metrics give an indication of the size of the source code, although
thresholds to evaluate their meaning depend on the programming language
and conventions used. In spite of this, size metrics should still be considered,
as large classes and methods will be harder to understand than ones of a lesser
size. Complexity metrics are usually considered as more meaningful
measures of the size of a software system than simple size metrics, as they are
not affected by the programming style. Object-oriented metrics can give an
indication on the quality of the source code, especially from the viewpoint of
classes and packages.

7.5.1.1 Size Metrics

Lines of Code (LOC). It is a size metric which simply counts the number of
lines of code in a source file or module. It is generally agreed that LOC is not
a very reliable metric, as it is affected by the coding style.

Non-Comment Non-Blank (NCNB). Also known as Source Lines of Code
(SLOC), it is a more sophisticated version of LOC. It counts the number of
lines of code, but excludes comments or blank lines.

7.5.1.2 Complexity Metric

Cyclomatic Complexity (CC). It is the most widely used complexity metric.
It counts the number of linearly independent paths through a program
module. It is calculated from the module’s control flow graph. CC = e - n +
2, where e is the number of edges in the graph and n, the number of nodes.
Program modules with a high complexity tend to be more difficult to
understand.

DRDC Valcartier TM 2006-732 33

7.5.1.3 Object-Oriented Class Metrics

The following list of object-oriented class metrics comes from the work of
Chidamber and Kemerer [65]. There is a significant amount of documentary
evidence on the degree to which the next six metrics provide insight into the
design process [64].

Weighted Methods per Class (WMC). It is the sum of the CC of all class
methods. The number of methods and their complexity are predicators of the
time and effort required to understand the class. Other information useful for
comprehension that can be derived from this metric is that the larger the
number of methods in a class, the greater is the potential impact on the
classes inheriting them. Also, classes with a large number of methods are
more likely to be application specific.

Response for a Class (RFC). Counts the number of methods that can be
invoked as a result of a message sent to an object of the class or by some
methods in the class. It also includes all the methods accessible within the
class hierarchy. The larger the RFC, the greater is the complexity of the class
and therefore, the more difficult it is to understand it.

Lack of Cohesion (LCOM). Counts the sets of methods in a class that are
not related through the sharing of some of the class's instance variables. High
cohesion indicates good class subdivision. A lack or low cohesion increases
complexity and therefore, comprehension. Classes with low cohesion should
be subdivided into two or more subclasses.

Coupling Between Object Classes (CBO). It is the number of distinct non-
inheritance related class hierarchies on which a class depends. The higher the
CBO of a class, the more difficult it is to understand it, as it is interrelated
with other classes.

Depth of Inheritance Tree (DIT). Counts the number of ancestors of a class,
from the class node to the root of the inheritance tree. The deeper a class is
within the inheritance hierarchy, the greater the number of methods it is likely
to inherit and therefore, the more complex is the prediction of its behavior.

Number of Children (NOC). Measures inheritance by counting the number
of immediate subclasses of a class. It gives an indication of the possible
influence a class has on the design of the system.

7.5.1.4 Object-Oriented Package Metrics

The following suite of object-oriented package metrics is based on the work
undertaken by Martin [66]. For Java, the notion of a package is well defined.
In the case of C++, it is defined as the set of classes in the modules of a single
directory [64].

34 DRDC Valcartier TM 2006-732

Afferent Coupling (Ca). Counts the number of other packages which depend
on classes within the analyzed package. Ca is an indicator of the level of
responsibility of a package.

Efferent Coupling (Ce). Counts the number of other packages that the
classes within the analyzed package depend upon. Ce is an indicator of the
package’s independence.

Abstractness (A). It is the ratio of the number of abstract classes within a
package relative to the total number of classes it contains. The range of this
metric is from 0 to 1. An abstractness value of zero (A = 0) indicates a
completely concrete package, while a value of one (A = 1) indicates a
completely abstract package.

Instability (I). Instability is defined as the ratio between efferent and total
coupling (Ca + Ce). This metric is an indicator of the package’s resilience to
change, i.e., the effort to change a package without impacting other packages
within the application. The range of this metric goes from 0 to 1. An I of 0
reveals a completely stable package, while an I of 1 indicates that the package
is unstable.

Distance from the Main Sequence (DMS). Calculates the perpendicular
distance of a package from the idealized line given by A + I = 1. It indicates
the package’s balance between abstractness and stability. A package squarely
on the main sequence is perfectly balanced with respect to abstractness and
stability. Ideally, packages should either be completely abstract and stable (x
= 0, y = 1), or completely concrete and unstable (x = 1, y = 0). The range for
this metric goes from 0 to 1. A DMS of 0 indicates that a package is
coincident with the main sequence, while a DMS of 1 reveals that the
package is as far as possible from the main sequence.

7.5.2 Feature Location

A feature is defined as a behavior that is observable to a user interacting with
a system [67]. The mapping between a feature and the source code
implementing it is termed in software engineering as feature location [68].

There exist several techniques to assist with the task of feature location. The
present functional architecture supports two of them. The first technique is
software reconnaissance, while the second one makes use of concept analysis,
a mathematical technique to investigate binary relations.

Software reconnaissance [68] is an automated feature location technique
which uses dynamic analysis of scenario execution. A scenario is a sequence
of user inputs triggering actions of a system which yields an observable result
to an actor [23]. A scenario is said to execute a feature if the observable result
is executed by the scenario’s actions [69].

DRDC Valcartier TM 2006-732 35

Software reconnaissance works as follows [69]:

1. The invoking input set I, i.e., a set of scenarios that will execute the
feature, is identified.

2. The excluding input set E, i.e., a set of scenarios that will not execute the
feature, is identified.

3. The system is executed twice using I and E separately.

4. By subtracting all the methods in the execution trace for E from those in
the execution trace for I, the remaining methods are the ones that
specifically deal with the feature and are a starting point for a more
detailed static analysis.

The above approach for feature location deals with one feature at a time and
gives little insight into connections between a set of related features. To
derive detailed relationships between features and executed programs, a
second technique [69] using concept analysis is proposed. Concept analysis is
a mathematical technique that provides insights into binary relations [70].
The activities this second technique involves are briefly described next. For a
more detailed description, please refer to Appendix A.

1. The set of relevant features F is identified.

2. The set of scenarios A is identified so that the features in F are covered.

3. Execution traces are generated so that all methods executed for each
scenario are identified.

4. The relation table R between scenarios and methods is created.

5. Concept analysis is performed for the relation table R.

This technique identifies methods jointly required by any subset of features,
classifies methods as low or high-level with respect to the given set of
features, reveals additional dependencies between methods, and helps to
identify the methods that together constitute a larger component [69].

7.5.3 Domain Knowledge Exploitation

One of the objectives of software comprehension is to understand the domain
semantics of source code, i.e., to understand the functionality of the source
code in terms of the system’s application domain. A domain is a problem area
characterized by its vocabulary, common assumptions, architectural solution
approaches, and literature [71]. As will be discussed in Section 7.9.3, the
Domain Knowledge Definition service group of the present functional
architecture allows users to capture and define the domain model of a

36 DRDC Valcartier TM 2006-732

software system. This knowledge will allow them, while analyzing the system
under study, to map source code elements to their corresponding concepts of
the application domain, as well as give them a set of expected constructs to
look for in the source code. These could be computer representations of real
world objects, algorithms, or overall architectural schemes.

7.6 Synthesis

According to Bloom’s Taxonomy [62], synthesis consists of building a structure or
pattern from diverse elements, i.e., to put parts together to a form a whole, with the
emphasis on creating a new meaning or structure. The OASIS functional architecture
provides three service groups to combine several source code elements to form a new
whole at a higher level of abstraction: Design Pattern Recognition, Platform Model
Transformations, and Clustering. These are explained next.

7.6.1 Design Pattern Recovery

One of the typical methods to understand the source code of a software
system is to generate a graphical representation of its logical structure and
behavior using, for example, the Unified Modeling Language (UML). The
OASIS functional architecture supports the generation of such diagrams, as
further described in Section 7.7. However, these graphical representations
alone are often still insufficient for someone who is trying to completely
understand a section of source code. One of the possible reasons, as stated by
Beck and Johnson in [72], is that “existing design notations focus on
communicating the ‘what’ of designs, but almost completely ignore the
‘why’.”

A design pattern “provides a scheme for refining the subsystems or
components of a software system, or the relationships between them. It
describes commonly recurring structure of communicating components that
solves a general design problem within a given context” [73]. A design
pattern not only contains a solution, i.e., the elements that make up the
design, their relationships, responsibilities, but also the results and trade-offs
of applying the pattern [74]. The recovery of design patterns helps in the
understanding of a piece of source code, since a pattern provides knowledge
about the role of each class within the pattern, the reason of certain
relationships among pattern constituents and/or the remaining parts of a
system. The recovery of design patterns is also important for comprehension,
as they capture the rational behind the source code and can partially answer
the question as to why is the system designed like that?

A typical system structure for design pattern recovery consists of three parts:
a parser, detector, and database. Using the static facts extracted from the
source code parser, the detector retrieves pattern definitions from the
database, compares them with the extracted facts, and outputs the detection
results [75]. Recovering design patterns is challenging and the precision of

DRDC Valcartier TM 2006-732 37

the currently existing techniques varies. Also, most of them can only identify
a predefined set of structural design patterns.

7.6.2 Platform Models Transformations

The increasing number of technologies and target architectures that are
available today for each component of a software system complicates the
development of large scale systems. For example, each different platform
results in different requirements for the design. As a consequence, the
resulting designs are not portable, as they are too specifically related to a
particular technology platform. Selecting a different platform, or simply
changing the version of the platform used, necessitates great efforts.

As a solution to the above problem, the OMG has defined an approach to
software system specification called Model Driven Architecture (MDA).
MDA separates the specification of system functionality from the
specification of the implementation of that functionality on a specific
technology platform [76]. This approach, as well as the standards which
support it, allow the same model specifying system functionality to be
realized on multiple platforms through auxiliary mapping standards, or
through point mappings to specific platforms [76]. This is achieved by the use
of Platform Independent Models (PIMs) and Platform Specific Models
(PSMs).

A PIM is a model, expressed in UML, of a subsystem that contains no
information specific to the platform or the technology that is used to realize it
[77]. A PSM is a model of a subsystem that includes information about the
specific technology that is used in its realization on a specific platform and
hence, possibly contains elements that are specific to the platform [77]. This
is also a UML model but expressed, because of the conversion step, in a
dialect, i.e., a profile, of UML that precisely mirrors technical run-time
elements of the target platform [78]. Note that the semantics of the PIM are
also carried into the PSM.

An example of a PIM could be the formal definition of an operation that
transfers funds from a checking to a savings account, specifying the amount
to be subtracted from a designated checking to a designated savings account,
as well as the constraint that the two accounts must belong to the same
customer [76]. On the other hand, a specification of the funds transfer
operation depending on interfaces to artifacts of CORBA, like the ORB,
Object Services, or GIOP/IIOP would be a PSM.

In MDA, how the functionality specified in a PSM is derived from a PIM is
done through transformations. As illustrated in Figure 16, when a PIM is
sufficiently refined to be projected to the execution infrastructure, it is
transformed into one or more PSMs, as each technology platform necessitates
its specific PSM. Following this, the application code is generated. For
component environments, it will consist of producing several types of code

38 DRDC Valcartier TM 2006-732

and configuration files, such as interface, component definition, program
code, component configuration, and assembly configuration files [78].

Figure 16. MDA Transformations

As illustrated in Figure 17, the Platform Models Transformations service
group of the present functional architecture attempts to inverse the order of
the MDA transformations. Starting from the application code, the PSM would
be recovered. Then, it would be transformed to produce a complete PIM.

Figure 17. Inverse MDA Transformations

DRDC Valcartier TM 2006-732 39

Recovering the fundamental precise structure and behavior of a software
system in the PIM from implementation specific concerns contained in the
PSM would facilitate its comprehension. It is easier to understand a model
uncluttered by platform-specific semantics [76]. For example, a PSM need to
use platform concepts of exception mechanisms, parameter types (e.g.,
platform-specific rules about objects references, value types, and semantics of
call by value), as well as component model constructs, while a PIM does not
need these characteristics and can use instead a simple and more uniform
model [76]. By abstracting the implementation details, one can focus on the
functionalities provided by a system and recover its domain model contained
as part of the PSM.

7.6.3 Clustering

One way to understand a large scale software system is to decompose it into
smaller subsystems which are more manageable and easier to understand.
One technique which has been designed to facilitate the execution of this task
automatically is software clustering. A cluster is commonly defined as a
category of objects which exhibit similar features or properties [79].
Clustering aims at partitioning the source files of a software system into
clusters, such that files which contain source code with similar functionality
are placed in the same cluster, while files in different clusters contain source
code that performs dissimilar functions [80]. Clustering techniques usually
make use of criteria such as high cohesion and low coupling to decompose a
software system into subsystems [81, 82, 83].

As mentioned in [79], in order to be useful for comprehension, an effective
software clustering algorithm should propose clusters which follow familiar
patterns and have appropriate names. The size of clusters should be kept at
around 20 objects, by creating hierarchies of nested clusters. This approach,
combined with effective visualization techniques, should produce clusterings
that are useful for the comprehension of an unfamiliar system. An example of
an algorithm which subscribes to this philosophy is the Algorithm for
Comprehension-Driven Clustering (ACDC) presented in [79].

7.7 Visualization

The Visualization subsystem allows to generate modeling diagrams using, for instance,
UML, to comprehend a system architecture from different views and using semantic
zooming as a visualization technique. These views capture the decisions about the
system’s requirements, its logical and physical elements, as well as its structural and
behavioral aspects. The different views generated by the present functional
architecture are the design, interaction, implementation, and use case view. The
different diagrams associated with each of them are indicated in Table 1 on the next
page.

40 DRDC Valcartier TM 2006-732

Table 1. Diagrams Associated with Each View

 Design View Interaction View Implementation View Use Case View

Diagram Static Dynamic Static Dynamic Static Dynamic Static Dynamic

Package x

Class x x

Component x

Interaction x x x x

Call Graph x

Statechart x x x x

Activity x x x x

Use Case x

7.7.1 Package Diagram

A package is a general-purpose mechanism for organizing elements (e.g.,
classes, interfaces, other packages) into groups [84]. It is graphically rendered
as a tabbed folder. A package diagram is composed only of packages and the
dependencies between them. Figure 18 below shows an example of a package
diagram.

Figure 18. Package Diagram [85]

DRDC Valcartier TM 2006-732 41

7.7.2 Class Diagram

Class diagrams model the static design view of a software system. They are
used to visualize the static aspects of its building blocks, their relationships,
as well as to specify their details for construction. As illustrated in Figure 19,
a class diagram shows a set of classes, interfaces, collaborations, and their
relationships [84].

Figure 19. Class Diagram [85]

7.7.3 Component Diagram

UML components model the physical elements of a software system, such as
executables, libraries, tables, files, and documents [84]. They typically
represent the physical packaging of otherwise logical elements, such as
classes, interfaces, and collaborations. Graphically, a component is rendered
as a rectangle with tabs.

Figure 20 displays an example of a component diagram. It shows the
organization and dependencies among a set of components. It addresses the
static implementation view of a software system [84].

42 DRDC Valcartier TM 2006-732

Figure 20. Component Diagram [85]

7.7.4 Interaction Diagram

Interaction diagrams model the dynamic aspect of a software system. They
model concrete or prototypical instances of classes, interfaces, components,
and nodes, along with the messages which are dispatched among them [84].
There are two types of interaction diagrams: sequence and communication
diagram, the latter formerly known as collaboration diagram.

A sequence diagram, such as the one shown in Figure 21, emphasizes the
time ordering of messages, while a communication diagram, like the one
displayed in Figure 22, puts the accent on the structural organization of the
objects which send and receive messages. Interaction and communication
diagrams are semantically equivalent, i.e., one can be converted to the other
without loss of information [84].

DRDC Valcartier TM 2006-732 43

Figure 21. Sequence Diagram [85]

Figure 22. Communication Diagram [85]

44 DRDC Valcartier TM 2006-732

7.7.5 Call Graph

A call graph is a directed graph which represents calling relationships
between functions in a given program [86]. It shows the control flow of a
program and can be determined partially using static analysis. In this case, it
is usually regarded as a nondeterministic structure, as many branches are
decided only at run time. A call graph can also be based on an execution
trace, as illustrated in the Rational Quantify [87] call graph of Figure 23.

Figure 23. Rational Quantify Call Graph

7.7.6 Statechart Diagram

A state machine is a behavior which specifies the sequence of states a single
object goes through during its lifetime in response to events, together with its
responses to those events [84]. A state is represented as a rectangle with
rounded corners. The relationships between two states indicating that an
object in the first state will perform certain actions and enter the second state
when a specified event occurs is a transition [84]. It is rendered a solid
directed line.

A statechart diagram is a diagram that shows a state machine, as illustrated in
Figure 24.

DRDC Valcartier TM 2006-732 45

Figure 24. Statechart Diagram [85]

7.7.7 Activity Diagram

An activity diagram shows the flow from activity to activity. An activity is an
ongoing nonatomic execution within a state machine. It ultimately results in
some action, which is made up of executable atomic computations that result
in a change of state in the system or the return of a value [84]. Calling an
operation, sending a signal, creating or destroying an object, and evaluating
an expression are examples of activities.

An activity diagram contains action and activity sates, transitions, branches,
forks, and joins. Action and activity states are represented using a lozenge
shape. A transition occurs when an action or activity of a state completes and
the flow of control passes to the next one. It is represented as a directed line.
A branch, depicted as a diamond, specifies alternate paths. Finally, a fork and
join respectively represents the splitting of a single flow of control into two or
more concurrent flows of control and their synchronization. Both are
rendered as a thick horizontal line.

Activity diagrams are used to model a workflow or an operation. Figure 25
shows the activity diagram of a process order.

46 DRDC Valcartier TM 2006-732

Figure 25. Activity Diagram [85]

7.7.8 Use Case Diagram

In UML, a use case specifies the behavior of a system, or a part of a system,
and is a description of a set of sequences of actions, including variants, that a
system performs to yield an observable result of value to an actor [84]. It
represents a functional requirement and is rendered graphically as an ellipse.
An actor represents a coherent set of roles that users play when interacting
with the system. Typically, an actor represents a role played by a human, a
hardware device, or even another system [84]. Actors are rendered as stick
figures.

DRDC Valcartier TM 2006-732 47

A use case diagram shows a set of use cases, actors, as well as their
relationships [84]. Figure 26 displays an example of a use case diagram for a
sales order system.

Figure 26. Use Case Diagram [85]

7.7.9 Semantic Zooming

Semantic zooming is a visualization technique defined by Bederson and
Hollan [88]. The principle behind it is that as the viewpoint zooms on an area,
the details not only become more distinct, as one would expect by virtue of
being closer, but the representation also changes [89]. For example, in Figure
27, (a) displays the top level view of a method; (b) displays the top level view
after semantic zooming has been triggered; (c) shows the resulting detailed
view of the method, with the high level program elements of (a) still visible.

48 DRDC Valcartier TM 2006-732

P

(a) (b)

(c)

Figure 27. Semantic Zooming

In the present functional architecture, semantic zooming is used for package
and class diagrams. When the viewpoint zooms on a package, the classes
declared inside appear. If semantic zooming is still applied, the methods and
instance variables of the class become visible.

7.8 Documentation Generation

It is commonly accepted that good documentation significantly improves the process
of understanding a software system. However, as already mentioned, most existing
systems have probably undergone several code revisions without a real concern about
maintaining their documentation up to date [3]. One area of reverse engineering which
intends to recover the documentation about an existing subject system is
redocumentation [90]. Redocumentation is the creation or revision of a semantically
equivalent representation within the same relative abstraction level [90]. As shown in
Figure 28, redocumentation cannot entirely be derived automatically. It has to be
combined with information provided by hand. This information is supplied by users
knowledgeable about the domain and/or system.

DRDC Valcartier TM 2006-732 49

Figure 28. Rocumentation Process [91]

At the architectural level, the purpose of redocumentation is to recover the software
system architectural description, which is organized into one or more constituents
called views. Each view addresses one or more of the concerns of the system
stakeholders and may consist of one or more architectural models [92]. Therefore, to
redocument an architecture, multiple views and documents must be created. In
addition, navigation mechanisms must be provided to assist in discovering related
information among the various views and documents generated. Numerous
documentation approaches make use of hypertext to link related documents [93, 94,
95].

The remaining of this section briefly describes three methodologies used in forward
engineering and identifies some documentation artifacts they produce which could be
recovered from an existing software system. However, as illustrated in Figure 29, there
is a limit to what reverse engineering can recover.

50 DRDC Valcartier TM 2006-732

Figure 29. Differences between Forward and Reverse Engineering Viewpoints [90]

7.8.1 Rational Unified Process

The Rational Unified Process (RUP) is a software engineering process
framework. It provides a disciplined approach to assign and manage tasks and
responsibilities to produce high-quality software that meets the needs of its
end users within a predictable schedule and budget [96]. RUP is based on a
set of building blocks which describe what is to be produced, the necessary
skills required, and the step-by-step explanation describing how specific
development goals are achieved. The work products are probably the
elements of most interest for documentation generation, as they represent the
documents and models produced while working through the process. The
major ones are illustrated in Figure 30.

DRDC Valcartier TM 2006-732 51

Figure 30. Major Work Products of the Rational Unified Process [96]

Only a subset of the above work products can be recreated from an existing
software system. Examples are the analysis, design, and implementation
model, which roughly correspond to the existing design and code elements of
Figure 29. The software requirements specification contains use cases, which
can also be retrieved using an approach such as the one described in [97]. The
last work product from an existing software system that can partially be
recovered is the deployment plan, which includes installation scripts and
configuration documents. The remaining RUP work products cannot be
recreated as they are too high level and too close to the application domain. It
would require a considerable manual effort from a person knowledgeable
about the system, its stakeholders, and the context in which it was developed.

7.8.2 Department of Defense Architecture Framework

The Department of Defense Architecture Framework (DoDAF) defines a
common approach for DoD architecture description, development,
presentation, and integration for both warfighting operations and business
processes [98]. As illustrated in Figure 31, it is organized into four basic view
sets: the overarching All View (AV), Operational View (OV), Systems View
(SV), and Technical Standards View (TV). Each view has a number of
products that describe its various aspects.

Although DoDAF is specifically suitable for large systems with complex
integration and interoperability challenges, it does not represent software
architectures. Some software architectural views are needed to supplement
the DoDAF products to understand how well these systems will operate [99].
As a result, it is not a suitable candidate for documentation generation.
However, in spite of that, some of the DoDAF products could be recreated

52 DRDC Valcartier TM 2006-732

from an existing system. One example is the TV-1 Technical Standards
Profile, which documents the standards used in a given architecture. In the
SV, the following products could also be recovered: the SV-4 Systems
Functionality Description, which details the functions performed by systems
and the information flow among system functions; the SV-10b Systems State
Transition Description, that illustrates the responses of a system to events; the
SV-10c Systems Event-Trace Description, which refines the critical
sequences of events described in the OV; and the SV-11 Physical Schema,
which is a physical implementation of the information of the OV-7 Logical
Data Model.

Figure 31. DoDAF View Sets [98]

7.8.3 IEEE 12207

The IEEE 12207 standard establishes a common framework for software life
cycle processes [100]. As shown in Figure 32, these are defined in three
broad categories: Primary Life Cycle Processes, Supporting Life Cycle
Processes, and Organizational Life Cycle Processes. Each process is defined
in terms of activities, which are in turn broken down into a set of tasks.

DRDC Valcartier TM 2006-732 53

Figure 32. 12207 Life Cycle Processes [100]

The IEEE 12207 standard is especially appropriate for acquisitions, as it
recognizes the distinct roles of acquirer and supplier. In fact, it is intended for
two-party use, where an agreement or contract defines the development,
maintenance, or operation of a software system [101]. The set of processes,
activities and tasks are then adapted to the software project. As the IEEE
12207 standard is a relatively high-level document, it does not specify the
details of how to perform the activities and tasks comprising the processes,
nor does it prescribe the format or content of documentation [101]. As a
result, it may be difficult to redocument an existing software system.
However, some information contained in the documents created as part of the
development process activities could be recovered. These development
activities, illustrated in Figure 33, are closely related to the major work
products of the RUP described in Section 7.8.1.

54 DRDC Valcartier TM 2006-732

Figure 33. 12207 Activity Classification [102]

7.9 Comprehension Process

Once implemented, the present functional architecture will expose potential users to a
lot of information, as software systems to be comprehended will become larger and
grow into complexity. Depending on the specific task a user wants to accomplish,
some of the information and techniques provided by the OASIS tool could be
irrelevant, therefore overloading the user with unrelated information. To prevent such
situations from happening, the architecture recovery and comprehension tool should
provide users with the necessary guidance in choosing the tools, abstraction levels, and
analysis techniques that are appropriate for the specific task to be performed. This
support will be provided through the Comprehension Process subsystem. This
subsystem combines user experience with techniques and tools to reduce the
complexity of the comprehension process, by providing only a coherent set of
applicable tools and information relevant to the specific comprehension task.

7.9.1 Process Management

As mentioned in Section 3, there are many individual characteristics that will
impact how a programmer tackles a comprehension task [7]. The most
important ones are the program under study, the characteristics of the
programmer, as well as the comprehension task to achieve. However, the
currently existing tools do not take these characteristics into consideration, as
they provide a one tool fits all approach. They do not distinguish between the

DRDC Valcartier TM 2006-732 55

different users’ experience and knowledge levels, as well as the particular
comprehension goals and tasks.

The OASIS functional architecture attempts to address this limitation by
offering the possibility to create user specific architecture recovery and
comprehension workflow templates. These templates are created by users to
take into consideration their technical expertise, the comprehension tasks they
want to complete, as well as the type of software system to be analyzed.

7.9.2 Process Execution

Once created, the architecture recovery and comprehension workflow
templates can be instantiated to guide users while performing comprehension
tasks. These could be similar to the cheat sheets provided by Eclipse. An
example of an Eclipse cheat sheet is illustrated in Figure 34. A cheat sheet
guides the user through a series of complex tasks to achieve an overall goal.
Some steps can be performed by the cheat sheet and some are described so
that the user can manually complete them.

The instantiated workflows would guide users through predefined tasks by
providing them with a choice of tools, abstraction levels, and analysis
techniques that might be useful during a specific task. The objective is to
avoid exposing irrelevant information to the user.

Figure 34. Eclipse Cheat Sheet

56 DRDC Valcartier TM 2006-732

7.9.3 Domain Knowledge Definition

In Section 2.2, one of the cognitive models presented to understand a
software system is the top-down approach. Using this strategy, a programmer
reconstructs knowledge about the application domain and then maps it on the
source code to identify the relevant software artifacts. However, one
limitation of the current tools which was identified in Section 6 is that they do
not offer functionalities to incorporate domain and user knowledge about a
software system. This might prevent programmers from using the top-down
approach as a comprehension strategy.

To overcome this limitation, the Domain Knowledge Definition service group
allows users to capture and define the domain model of a software system to
comprehend. This results in a vocabulary of terms representing entities of the
domain and their relationships, which together imply certain semantic
information. For example, if a user wanted to understand the Collaborative
Operations Planning System (COPlanS) [103], an application developed by
the Decision Support Systems Section at DRDC Valcartier to support the
Military Operational Planning Process, then the user would use the Domain
Knowledge Definition service group to define in a model, the elements of the
application domain. In this particular case, such elements could be course of
action, mission, operation, and risk. This model would then be used to map
the elements of the application domain to their corresponding source code
artifacts.

7.10 Graphical User Interface

The OASIS functional architecture aims at providing an environment into which
comprehension tools can be integrated. This integration is supported at the data level
by the infrastructure, which consists of the Information Management Services, Data
Access, and Repositories subsystems. However, this integration must also be
supported at the user interface level. This separation of concerns between the data and
user interface is known as the Model-View-Controller architectural pattern [104]. In
this pattern, the model represents the information on which the application operates,
the view renders the model in a form suitable for interaction, and the controller
processes and responds to user actions to invoke changes on the model. The controller
can control several views. This is required to support the concept of multiple
coordinated views, which enhance comprehension activities [105].

The coordination mechanism in the present functional architecture is achieved through
the use of pluggable units of functionalities called plug-ins. This is similar to what is
used in Eclipse. A plug-in provides functionality by hooking into extension points
defined by other plug-ins. It can also define new extension points. Using this
mechanism, several views can be coordinated. As an example, in Figure 35, when the
ListTest item is selected in the Package Explorer view, the same element is
selected in the Outline and Properties views and displayed in the editor. Also,
selecting an item can cause the editor to scroll if this element was not visible.

DRDC Valcartier TM 2006-732 57

Another concept present in Eclipse is user action. Plug-ins can add actions to menus,
contextual menus, and toolbars, for example, and reuse existing actions. This helps in
providing a consistent user experience across various integrated tools.

Figure 35. View Coordination in Eclipse

58 DRDC Valcartier TM 2006-732

8. Conclusions and Future Work

The research community in the field of software comprehension has produced many
diverse tools and prototypes to assist with the understanding of already existing
systems [7]. However, the majority of these tools have not yet been adopted in the
industry. One possible explanation for this is that the value of many research ideas has
not been adequately substantiated through studies [11].

The present technical memorandum describes the functional decomposition of an
architecture recovery and comprehension tool. This functional decomposition is based
on the results of a qualitative study conducted by the OASIS research group using
static and dynamic analysis tools to recover and comprehend the architecture of large
scale military applications written in C++ and Java. It is also based on the findings
contained in a state-of-the-art survey on system architecture recovery and
comprehension. This functional decomposition is a way to synthesize the knowledge
of the OASIS group in this research area. It serves as a reference model which is
destined to evolve with the advancement of the group’s knowledge in the area of
architecture recovery and comprehension and orient its future work.

Following the conceptualization of this functional decomposition, the next step will
consist of implementing a subset of it as a collection of Eclipse plug-ins to recover and
comprehend the architecture of Java software systems. As already mentioned, Eclipse
is an extensible open source IDE. Using Eclipse and its plug-in architecture will
prevent the OASIS project from making the same mistake many existing tools have
made, i.e., provide a suite of tools that aim for “one tool fits all.” There already exist a
wide variety of tools available as Eclipse plug-ins that can assist with program
comprehension. The extensible architecture of Eclipse will allow the OASIS project to
take advantage of these tools and integrate them with the technical solutions to be
developed at DRDC Valcartier. Using Eclipse as a development framework will also
allow the OASIS project to reuse the browsing and searching functionalities it offers
and which were found to be useful for the comprehension of software systems in [6].

Ideally, once this prototype is developed, another study, similar to the previous one but
with an improved design and set of comprehension tasks, should be conducted. Its
objective would be to assess the added value of the OASIS architecture recovery and
comprehension prototype on the understanding of participants. Future work should
also consist of extending the prototype to support the architecture recovery and
comprehension of C++ legacy systems, through the Eclipse C/C++ Development
Tooling (CDT) project [106]. This would address one limitation of most existing tools,
i.e., multi-language support.

DRDC Valcartier TM 2006-732 59

9. References

1. The Technical Cooperation Program - Joint Systems and Analysis Group,
 “The Engineering and Acquisition of Systems of Systems in the United States
 DoD,” Tech. Report TR-JSA-TP4-1-2001, Jan. 2001.

2. D. Garlan and D.E. Perry, “Introduction to the Special Issue on Software
 Architecture,” IEEE Trans. on Software Eng., vol. 21, no. 4, Apr. 1995, pp.
 269-274.

3. R. Richardson, et al., “A Survey of Research into Legacy System Migration,”
 Tech. Report TCD-CS-1997-01, Trinity College Dublin, Dublin, Ireland, Jan.
 1997.

4. M. Lizotte and J. Rilling, “OASIS: Opening-up Architecture of Software-
 Intensive Systems”, Proc. of the 24th Army Science Conf. (ASC’04), Orlando,
 Fla., Nov. 2004.

5. J. Rilling, “State of the Art Report: System Architecture Recovery and
 Comprehension,” Tech. Report, DRDC Valcartier, Val-Bélair, Que., 2003.

6. P. Charland, et al., “Using Software Analysis Tools to Understand Military
 Applications: A Qualitative Study,” Tech. Memorandum TM 2005-425,
 DRDC Valcartier, Val-Bélair, Que., 2005.

7. M.-A.D. Storey, “Theories, Methods and Tools in Program Comprehension:
 Past, Present and Future,” Proc. of the 13th Int’l Workshop on Program
 Comprehension (IWPC’05), St. Louis, Mo., May 2005, pp. 181-191.

8. E. Soloway and K. Ehrlich, “Empirical Studies of Programming Knowledge,”
 IEEE Trans. on Software Eng., vol. 10, no. 5, Sept. 1984, pp. 595-609.

9. E. Soloway, et al., “Designing Documentation to Compensate for Delocalized
 Plans,” Comm. of the ACM, vol. 31, no. 11, Nov. 1988, pp. 1259-1267.

10. R. Brooks, “Towards a Theory of the Comprehension of Computer
 Programs,” Int’l J. of Man-Machine Studies, vol. 18, no. 6, June 1983, pp.
 543-554.

11. M.-A.D. Storey, K. Wong, and H.A. Müller, “How Do Program
 Understanding Tools Affect How Programmers Understand Programs?,” J.
 Science of Computer Programming, vol. 36, no. 2-3, Mar. 2000, pp. 183-207.

12. B. Shneiderman and R. Mayer, “Syntactic/Semantic Interactions in
 Programmer Behavior: A Model and Experimental Results,” Int’l J. of
 Computer and Information Sciences, vol. 8, no. 3, June 1979, pp. 219-238.

60 DRDC Valcartier TM 2006-732

13. B. Shneiderman, Software Psychology: Human Factors in Computer and
 Information Systems, Winthrop Publishers, 1980.

14. N. Pennington, “Stimulus Structures and Mental Representations in Expert
 Comprehension of Computer Programs,” Cognitive Psychology, vol. 19,
 1987, pp. 295-341.

15. S. Letovsky, “Cognitive Processes in Program Comprehension,” Proc. of the
 1st Workshop on Empirical Studies of Programmers, Ablex Publishing, 1986,
 pp. 58-79.

16. D.C. Littman, et al., “Mental Models and Software Maintenance,” 1st
 Workshop on Empirical Studies of Programmers on Empirical Studies of
 Programmers, Washington, D.C., 1986, pp. 80-98.

17. A. von Mayrhauser and A.M. Vans, “From Code Understanding Needs to
 Reverse Engineering Tool Capabilities,” Proc. of the 6th Int’l Workshop
 Computer-Aided Software Eng. (CASE’93), Singapore, Jul. 1993, pp. 230-
 239.

18. M.-A.D. Storey, F.D. Fracchia, and H.A. Mueller, “Cognitive Design
 Elements to Support the Construction of a Mental Model during Software
 Visualization,” Proc. of the 5th Int’l Workshop on Program Comprehension
 (IWPC’97), Dearborn, Mich., May 1997, pp. 17-28.

19. S.R. Tilley, S. Paul, D.B. Smith, “Towards a Framework for Program
 Understanding,” Proc. of the 4th Int’l Workshop on Program Comprehension
 (IWPC’96), Berlin, Germany, Mar. 1996, pp. 19-28.

20. F. Détienne, Software Design: Cognitive Aspects, Springer, 2001.

21. I. Vessey, “Expertise in Debugging Computer Programs: A Process
 Analysis,” Int’l J. of Man-Machine Studies, vol. 23, no. 5, Nov. 1985, pp.
 459-494.

22. V. Rajlich, “Comprehension and Evolution of Legacy Software,” Proc. of the
 19th Int’l Conf. on Software Eng., Boston, Mass., May 1997, pp. 669-670.

23. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language
 Reference Manual, Addison-Wesley, 2004.

24. T.J. Biggerstaff, B.G. Mitbander, and D. Webster, “The Concept Assignment
 Problem in Program Understanding,” Proc. of the 5th Int’l Conf. on Software
 Eng., Baltimore, Md., May 93, pp. 482-498.

25. J. Singer, et al., “An Examination of Software Engineering Work Practices,”
 Proc. of the 1997 Conf. of the Centre for Advanced Studies on Collaborative
 Research (CASCON’97), Toronto, Ont., Nov. 1997, pp. 209-223.

DRDC Valcartier TM 2006-732 61

26. K. Erdös and H.M. Sneed, “Partial Comprehension of Complex Programs
 (enough to perform maintenance),” Proc. of the 6th Int’l Workshop on
 Program Comprehension, Ischia, Italy, Jun. 1998, pp. 98-105.

27. Eclipse, “Eclipse.org home,” Jul. 2007; http://www.eclipse.org/.

28. Visual Studio, “Visual Studio 2005 Developer Center,” Jul. 2007; http://
 msdn2.microsoft.com/en-us/vstudio/default.aspx.

29. C. Ball, “What to Do When a Copy Is Not a Copy,” Oct. 25, 2006;
 http://www.law.com/jsp/legaltechnology/pubArticleLTN.jsp?id=1161680719
 761&rss=ltn.

30. CVS, “CVS - Open Source Version Control,” Jul. 2007; http://
 www.nongnu.org/cvs/.

31. Y. Liu and E. Stroulia, “Reverse Engineering the Process of Small Novice
 Software Teams,” Proc. of the 10th Working Conf. on Reverse Eng., Victoria,
 B.C., Nov. 2003, pp. 102-103.

32. L. Zou and M.W. Godfrey, “Detecting Merging and Splitting Using Origin
 Analysis,” Proc. of the 10th Working Conf. on Reverse Eng., Victoria, B.C.,
 Nov. 2003, pp. 146-154.

33. OMG “Architecture-Driven Modernization Task Force,” Jul. 2007; http://
 adm.omg.org.

34. I. Pashov and M. Riebisch, “Using Feature Modeling for Program
 Comprehension and Software Architecture Recovery,” Proc. of the 11th
 IEEE Int’l Conf. and Workshop on the Eng. of Computer-Based Systems, May
 2004, pp. 406-417.

35. Hibernate, “hibernate.org - Hibernate,” Jul. 2007; http://www.hibernate.org/.

36. Altova MapForce, “Data Mapping Tool from Altova: MapForce,” Jul. 2007;
 http://www.altova.com/products/mapforce/data_mapping.html.

37. S. Chamberlain, “An Enterprise Identifier Strategy for Global Naming Across
 Arbitrary C4I Systems,” Proc. of the 6th Int’l Command and Control
 Research and Technology Symposium, US Naval Academy, Annapolis, Md.,
 Jun. 2001.

38. W. Arms, “Digital Libraries: Glossary (1999),” Jul. 2007; http://
 www.cs.cornell.edu/ wya/DigLib/MS1999/glossary.html.

39. J. Knodel and Martin Pinzger, “Improving Fact Extraction of Framework-
 Based Software Systems,” Proc. of the 10th Working Conf. on Reverse Eng.,
 Victoria, B.C., Nov. 2003, pp. 186-195.

62 DRDC Valcartier TM 2006-732

40. R. Kazman, L. O’Brien, and C. Verhoef, “Architecture Reconstruction
 Guidelines, Third Edition,” Tech. Report CMU/SEI-2002-TR-034, Carnegie
 Mellon Univ., Pittsburgh, Pa., Nov. 2003.

41. J. Jones, “Abstract Syntax Tree Implementation Idioms,” Proc. of the 10th
 Conf. on Pattern Languages of Programs, Champaign, Ill., Sept. 2003.

42. C. Cifuentes and K. J. Gough, “Decompilation of Binary Programs,”
 Software - Practice & Experience, vol. 25, no. 7, Jul. 1995, pp. 811-829.

43. Program-Transformation.Org, “Program Transformation Wiki /
 Decompilation Process,” Jul. 2007; http://www.program-transformation.org/
 Transform/DecompilationProcess.

44. J. Miecznikowski and L. Hendren, “Decompiling Java Using Staged
 Encapsulation,” Proc. of the 8th Working Conf. on Reverse Eng., Stuttgart,
 Germany, Oct. 2001, pp. 368-374.

45. N.A. Naeem and L. Hendren, “Programmer-friendly Decompiled Java,” Proc.
 of the 14th Int’l Conf. on Program Comprehension, Athens, Greece, Jun.
 2006, pp. 327-336.

46. Q. Tu and M.W. Godfrey, “The Build-Time Software Architecture View,”
 Proc. of the 17th IEEE Int’l Conf. on Software Maintenance, Florence, Italy,
 Nov. 2001, pp. 398-407.

47. GNU Make, “GNU Make - GNU Project - Free Software Foundation (FSF),”
 Jul. 2007; http://www.gnu.org/software/make/.

48. Apache Ant, “Apache Ant - Welcome,” Jul. 2007; http://ant.apache.org/.

49. H.A. Müller, et. al., “Reverse Engineering: A Roadmap,” Proc. of the 22nd
 Int’l Conf. on Software Eng. (ICSE’2000), Limerick, Ireland, June 2000, pp.
 47-60.

50. G.A. Di Lucca, A.R. Fasolino, and U. de Carlini, “Recovering Class
 Diagrams from Data-Intensive Legacy Systems,” Proc. of the Int’l Conf. on
 Software Maintenance (ICSM’00), San Jose, Calif., Oct. 2000, pp. 52-63.

51. J.-L. Hainaut, et al., “Structure Elicitation in Database Reverse Engineering,”
 Proc. of the 3rd Working Conf. on Reverse Eng., Monterey, Calif., Nov.
 1996, pp. 131-140.

52. A. Seesing and A. Orso, “InsECTJ: A Generic Instrumentation Framework
 for Collecting Dynamic Information within Eclipse,” Proc. of the 2005
 OOPSLA Workshop on Eclipse Technology eXchange 2005, San Diego, Cal.,
 Oct. 2005, pp. 45-49.

DRDC Valcartier TM 2006-732 63

53. J. Guitart, et al., “Performance Analysis Tools for Parallel Java Applications
 on Shared-Memory Systems,” Proc. of the Int’l Conf. on Parallel Processing,
 Valencia, Spain, Sept. 2001, pp. 357-364.

54. M. Biberstein, et al., “Instrumenting Annotated Programs,” Proc. of the 1st
 ACM/USENIX Int’l Conf. on Virtual Execution Environments, Chicago, Ill.,
 Jun. 2005, pp. 164-174.

55. IEEE Standard Glossary of Software Engineering Terminology, IEEE Press,
 1990.

56. J. Guo, Y. Liao, and B. Parviz, “A Performance Validation Tool for J2EE
 Applications,” Proc. of the 13th Ann. IEEE Int’l Symp. and Workshop on
 Eng. of Computer Based Systems, Potsdam, Germany, Mar. 2006, pp. 387-
 396.

57. BCEL, “BCEL - Byte Code Engineering Library (BCEL),” Jul. 2007; http://
 jakarta.apache.org/bcel/manual.html.

58. Eclipse TPTP, “Eclipse Test & Performance Tools Platform Project,” Jul.
 2007; http://www.eclipse.org/tptp/.

59. JUnit, “JUnit, Testing Resources for Extreme Programming,” Jul. 2007;
 http://www.junit.org/.

60. Eclipse BIRT, “Eclipse BIRT Home,” Jul. 2007; http://www.eclipse.org/
 birt/phoenix/.

61. FileMon, “FileMon for Windows v7.04,” Jul. 2007; http://
 www.microsoft.com/technet/sysinternals/utilities/Filemon.mspx.

62. B.S. Bloom, Taxonomy of Educational Objectives, Handbook 1: The
 Cognitive Domain, David McKay Co, 1956.

63. N.E. Fenton, “Software Measurement Programs,” Software Testing and
 Quality Eng., vol. 1, no. 3, 1999, pp. 40-46.

64. Headway Software, Headway reView/DesignKeeper 3.4: User
 Documentation, Headway Software, 2003.

65. S.R. Chidamber and C.F. Kemerer, “Towards a Metrics Suite for Object
 Oriented Design,” IEEE Trans. on Software Eng. vol. 20, no. 6, June 1994,
 pp. 476-493.

66. R. Martin, “OO Design Quality Metrics: An Analysis of Dependencies,”
 Proc. of the Workshop Pragmatic and Theoretical Directions in Object-
 Oriented Software Metrics, Oct. 1994.

64 DRDC Valcartier TM 2006-732

67. A.D. Eisenberg and K. De Volder, “Dynamic Feature Traces: Finding
 Features in Unfamiliar Code,” Proc. of the 21st IEEE Int’l Conf. on Software
 Maintenance, Budapest, Hungary, Sept. 2005, pp. 337-346.

68. N. Wilde and M.C. Scully, “Software Reconnaissance: Mapping Features to
 Code,” Software Maintenance: Research and Practice, vol. 7, no. 1, 1995,
 pp. 49-62.

69. T. Eisenbarth, R. Koschke, and D. Simon, “Aiding Program Comprehension
 by Static and Dynamic Feature Analysis,” Proc. of the IEEE Int’l Conf. on
 Software Maintenance (ICSM’01), Florence, Italy, Nov. 2001, pp. 602-611.

70. G. Birkoff, Lattice Theory, American Mathematical Society, 1992.

71. R. Prieto-Diaz and G. Arango, Domain Analysis and Software Systems
 Modeling, IEEE Computer Society, 1991.

72. K. Beck and R. Johnson, “Patterns Generate Architectures,” Proc. of the 8th
 European Conference on Object-Oriented Programming, Bologna, Italy, Jul.
 1994, pp. 139-149.

73. J. Hutchinson and G. Kotonya, “Patterns and Component-Oriented System
 Development,” Proc. of the 31st EUROMICRO Conf. on Software Eng. and
 Advanced Applications, Porto, Portugal, Aug. 2005, pp. 126-133.

74. E. Gamma, et al., Design Patterns: Elements of Reusable Object-Oriented
 Software, Addison-Wesley Professional, 1995.

75. W. Wang and V. Tzerpos, “DPVK - An Eclipse Plug-in to Detect Design
 Patterns in Eiffel Systems,” Electronic Notes in Theoretical Computer
 Science, vol. 107, Dec. 2004, pp. 71-86.

76. Architecture Board ORMSC, “Model Driven Architecture (MDA),”
 Document No. ORMSC/2001-07-01, Object Management Group, Jul. 2001.

77. J. Miller and J. Mukerji, “MDA Guide Version 1.0.1,” Document No.
 omg/2003-06-01, Object Management Group, Jun. 2003.

78. R. Soley, “Model Driven Architecture,” Object Management Group, Nov.
 2000.

79. V. Tzerpos, Comprehension-Driven Software Clustering, Ph.D. Thesis,
 University of Toronto, Toronto, Ont., 2001.

80. B. Andreopoulos, et al., “Multiple Layer Clustering of Large Software
 Systems,” Proc. of the 12th Working Conf. on Reverse Eng, Pittsburgh, Pa.,
 Nov. 2005, pp. 79-88.

DRDC Valcartier TM 2006-732 65

81. V. Tzerpos and R.C. Holt, “ACDC: An Algorithm for Comprehension-Driven
 Clustering,” Proc. of the 7th Working Conf. on Reverse Eng., Brisbane,
 Australia, Nov. 2000, pp. 258-267.

82. S. Mancoridis, et al., “Bunch: A Clustering Tool for the Recovery and
 Maintenance of Software System Structures,” Proc. of the IEEE Int’l Conf.
 on Software Maintenance (ICSM’99), Oxford, England, Aug. 1999, pp. 50-
 59.

83. B.S. Mitchell and S. Mancoridis, “Comparing the Decompositions Produced
 by Software Clustering Algorithms Using Similarity Measurements,” Proc. of
 Int’l Conf. of Software Maintenance (ICSM’01), Florence, Italy, Nov. 2001,
 pp. 744-753.

84. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language
 User Guide, Addison Wesley Professional, 2005.

85. Visual Paradigm, “UML 2 Diagrams - UML Modeling Tool,” Jul. 2007;
 http://www.visual-paradigm.com/VPGallery/diagrams/.

86. G.C. Murphy, D. Notkin, and E.S.-C. Lan, “An Empirical Study of Static Call
 Graph Extractors,” Proc. of the 18th Int’l Conf. on Software Eng., Berlin,
 Germany, Mar. 1996, pp. 90-99.

87. Rational PurifyPlus, “IBM - Rational PurifyPlus - Rational PurifyPlus -
 Software,” Jul. 2007; http://www-306.ibm.com/software/awdtools/
 purifyplus/win/.

88. B.B. Bederson, et al., “PAD++: A Zoomable Graphical Sketchpad for
 Exploring Alternate Interface Physics,” J. of Visual Languages and
 Computing, vol. 7, no. 1, 1996, pp. 3-32.

89. K.L. Summers, et al., “An Experimental Evaluation of Continuous Semantic
 Zooming in Program Visualization,” 2003 IEEE Symposium on Information
 Visualization, Seattle, Wash., Oct. 2003.

90. E.J. Chikofsky and J.H. Cross, “Reverse Engineering and Design Recovery:
 A Taxonomy,” IEEE Software, vol. 7, no. 1, Jan. 1990, pp. 13-17.

91. A. van Deursen and T. Kuipers, “Building Documentation Generators,” Proc.
 of the 15th IEEE Int’l Conf. on Software Maintenance (ICSM’99), Leicester,
 UK, Aug. 1999, pp. 40-49.

92. IEEE Recommended Practice for Architectural Description of Software-
 Intensive Systems, IEEE Std 1471-2000, IEEE Press, 2000.

93. P. Brown, “Integrated Hypertext and Program Understanding Tools,” IBM
 Systems J. vol. 30, no. 3, 1991, pp. 363-392.

66 DRDC Valcartier TM 2006-732

94. C. de Oliveira Braga et. al., “Documentu: A Flexible Architecture for
 Documentation Production Based on a Reverse-engineering Strategy,” J. of
 Software Maintenance: Research and Practice, vol. 10, no. 4, Jul./Aug. 1998,
 pp. 279-303.

95. V. Rajlich, “Incremental Redocumentation Using the Web,” IEEE Software,
 vol. 17, no. 5, Sept./Oct. 2000, pp. 102-106.

96. P. Kruchten, The Rational Unified Process: An Introduction, Addison-
 Wesley Professional, 2000.

97. G.A. Di Lucca, A.R. Fasolino, and U. de Carlini, “Recovering Use Case
 Models from Object-Oriented Code: a Thread-based Approach,” Proc. of the
 7th Working Conf. on Reverse Eng., Brisbane, Australia, Nov. 2000, pp. 108-
 117.

98. Department of Defense, DoD Architecture Framework Version 1.5: Volume
 I: Definitions and Guidelines, 2007.

99. W.G. Wood, et al., “DoD Architecture Framework and Software Architecture
 Workshop Report,” Tech. Note CMU/SEI-2003-TN-006, Carnegie Mellon
 Univ., Pittsburgh, Pa., Mar. 2003.

100. IEEE Standard for Information Technology - Software Life Cycle Processes,
 IEEE/EIA 12207.0-1996, IEEE Press, 1996.

101. Moore, J. “ISO 12207 and Related Software Life-Cycle Standards,” Jul.
 2007; http://www.acm.org/tsc/lifecycle.html.

102. International Standards Organization, “Information technology - Guide for
 ISO/IEC 12207 (Software Life Cycle Processes),” Tech. Report ISO/IEC TR
 15271:1998, 1998.

103. COPlanS, “COPlanS - Collaborative Operations Planning System,” Jul. 2007;
 http://www.valcartier.drdc-rddc.gc.ca/poolpdf/e/166_e.pdf.

104. M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley
 Professional, 2002.

105. J.C. Roberts, “On Encouraging Multiple Views for Visualization,” Proc. of
 the Int’l Conf. on Information Visualization (IV’98), London, UK, Jul. 1998,
 pp. 8-14.

106. Eclipse CDT, “Eclipse C/C++ Development Tooling - CDT,” Jul. 2007;
 http://www.eclipse.org/cdt/.

DRDC Valcartier TM 2006-732 67

10. Appendix A

Concept analysis is a mathematical technique that provides insights into binary
relations [70]. It is based on a relation R between a set of objects O and a set of
attributes A, i.e., R ⊆ O x A. As an example, Table 2 shows the binary relation between
arbitrary objects and attributes. In this case, an object oi has attribute aj if row I and
column j are marked with an x.

Table 2. Relation Example [69]

 a1 a2 a3 a4 a5 a6 a7 a8

o1 x x

o2 x x x

o3 x x x x x

o4 x x x x x x

A pair (O, A) is called a concept if all the objects in O share all attributes in A. Table 3
contains the concepts for the relation in Table 2.

Table 3. Concepts for Table 2

c1 ({o1, o2, o3, o4}, ∅)

c2 ({o2, o3, o4}, {a3, a4})

c3 ({o1}, {a1, a2})

c4 ({o2, o4}, {a3, a4, a5})

c5 ({o3, o4}, {a3, a4, a6, a7, a8})

c6 ({o4}, {a3, a4, a5, a6, a7, a8})

c7 (∅, {a1, a2, a3, a4, a5, a6, a7, a8})

If c1 ≤ c2 holds, then c1 is said to be a subconcept of c2 and c2, a superconcept of c1. For
example, since ({o2, o4}, {a3, a4, a5}) ≤ ({o2, o3, o4}, {a3, a4}), then c4 is a subconcept of
c2 and c2 is a superconcept of c4.

The set of all concepts in Table 3 is called a concept lattice. It is graphically
represented as a directed acyclic graph, where a node represents a concept and an edge
denotes a superconcept/subconcept relation. Figure 36 shows the concept lattice for the
relation in Table 2. The most general concept, denoted by T, is called the top element.
The most special concept, denoted by ⊥, is called the bottom element.

68 DRDC Valcartier TM 2006-732

The concept lattice of Figure 36 can be visualized in a more readable manner by
marking a graph node with an attribute a ∈ A, i.e., μ(a), if it represents the most
general concept that has a in its intent. Analogously, a node will be marked with an
object o ∈ O, i.e., γ(o), if it represents the most special concept which has o in its
extent. The resulting representation is called a sparse representation of the lattice.
Figure 37 displays the equivalent sparse representation of Figure 36.

C3 C4 C5

C2

C6

T C1

⊥ C7

C3 C4 C5

C2

C6

T C1

⊥ C7

Figure 36. Concept Lattice

o4

⊥

a6, a7, a8
o3

T

a5
o2

a1, a2
o1

a3, a4

o4

⊥

a6, a7, a8
o3

T

a5
o2

a1, a2
o1

a3, a4

Figure 37. Sparse Representation

DRDC Valcartier TM 2006-732 69

In a sparse representation, the content of a node N can be derived as follows
[69]:

• The objects of N are all objects at and below N.

• The attributes of N are all attributes at and above N.

To derive scenario-method relationships using concept analysis, one has to
define a formal context. In the present case, methods will be considered
objects and scenarios, attributes. As a result, a pair (method s, scenario S) is
in relation R if s is executed when S is performed [69].

The process of locating features using concept analysis is as follows [69]:

1. The set of relevant features is identified F = {f1 … fn}

2. The scenarios A = {S1 … Sq} are identified so that the features in F are
covered.

3. Execution traces are generated so that all required methods O = {S1 … Sq}
for each scenario are identified.

4. The relation table R is created so that (S1, s1), (S1, s2), …, (Sq, sp) ∈ R

5. Concept analysis is performed for (O, A, R)

Concept analysis applied to the formal context yields a lattice from which the
following relationships can be derived [69]:

• A method s is required for all scenarios at and above γ(s).

• A scenario S requires all methods at and below μ(S).

• A method s is specific to exactly one scenario S if S is the only scenario
on all paths from γ(s) to the top element.

• A scenario S is specific to exactly one method s if s is the only method on
all paths from μ(S) to the bottom element.

• Scenarios to which two methods s1 and s2 jointly contribute can be
identified by γ(s1) ∨ γ(s2). In the lattice, it is the closest common node
toward the top element starting at the nodes to which s1 and s2 are
attached. All scenarios at and above this common node are those jointly
implemented by s1 and s2.

• Methods jointly required for two scenarios S1 and S2 are described by
μ(S1) ∧ μ(S2). In the lattice, it is the closest common node towards the
bottom element starting at the nodes to which S1 and S2 are attached. All

70 DRDC Valcartier TM 2006-732

methods at and below this common node are those jointly required for S1
and S2.

• Methods required for all scenarios can be found at the bottom element.

• Scenarios that require all methods can be found at the top element.

• If γ(s1) < γ(s2) holds for two methods s1 and s2, then method s2 is more
specific with respect to the given scenario than method s1 because s1
contributes not just to the features for which s2 contributes, but also to
other features.

• If μ(S1) < μ(S2) holds for two scenarios S1 and S2, then scenario S2 is
based on scenario S1 because if S2 is executed, all methods in the extent of
μ(S1) need also to be executed.

Based on the relationships derived from the concept lattice, a decision can be
taken to analyze only a subset of the original features in depth due to the
additional dependencies that concept analysis could reveal. All the methods
required for these features form a starting point for further static analyses
[69].

DRDC Valcartier TM 2006-732 71

List of Acronyms

A Abstractness

ACDC Algorithm for Comprehension-Driven Clustering

ADM Architecture-Driven Modernization

API Application Programming Interface

AST Abstract Syntax Tree

AV All View

BCEL Byte Code Engineering Library

BIRT Business Intelligence and Reporting Tools

C4ISR Command, Control, Communications, Computers, Intelligence,
Surveillance, and Reconnaissance

Ca Afferent Coupling

CBO Coupling Between Object Classes

CC Cyclomatic Complexity

CDT C/C++ Development Tooling

Ce Efferent Coupling

CF Canadian Forces

COPlanS Collaborative Operations Planning System

CORBA Common Object Request Broker Architecture

CVS Concurrent Versions System

DIT Depth of Inheritance Tree

DMS Distance from the Main Sequence

DND Department of National Defence

DoDAF Department of Defense Architecture Framework

72 DRDC Valcartier TM 2006-732

DRDC Defence Research and Development Canada

EDI Environnement de Développement Intégré

EID Enterprise Identifier

ER Entity Relationship

FC Forces canadiennes

GIOP General Inter-ORB Protocol

GXL Graph eXchange Language

I Instability

IDE Integrated Development Environment

IIOP Internet Inter-ORB Protocol

JDT Java Development Tools

LCOM Lack of Cohesion

LOC Lines of Code

MDA Model Driven Architecture

NCNB Non-Comment Non-Blank

NOC Number of Children

OASIS Opening up Architecture of Software-Intensive Systems

OASIS Ouverture d’Architectures de Systèmes Informatisés Significativement

OMG Object Management Group

ORB Object Request Broker

OV Operational View

PIM Platform Independent Model

PSM Platform Specific Model

RFC Response for a Class

DRDC Valcartier TM 2006-732 73

RUP Rational Unified Process

SdS Systèmes de systèmes

SLOC Source Lines of Code

SoS System of Systems

SV Systems View

TPTP Test and Performance Tools Platform

TV Technical Standards View

UML Unified Modeling Language

WMC Weighted Methods per Class

XML Extensible Markup Language

74 DRDC Valcartier TM 2006-732

Distribution List

INTERNAL DISTRIBUTION

1 - Director General

3 - Document Library

1 - Head, System of Systems

1 - Philippe Charland (author)

1 - David Ouellet (author)

1 - Dany Dessureault (author)

1 - Michel Lizotte (author)

1 - Geneviève Dussault

1 - Michel Ducharme

1 - Head, Information and Knowledge Management

1 - François Lemieux

1 - Martin Salois

1 - Head, Decision Support Systems

1 - Bruno Gilbert

1 - Marc Lauzon

1 - Marc Grondin

1 - LCol Pierre Lefebvre

EXTERNAL DISTRIBUTION

1 - DRDKIM (PDF file)

DRDC Headquarters - 305 Rideau Street, Ottawa, ON, K1A 0K2

1 - Director Science and Technology Command, Control, Communications,
 Computers, Intelligence, Surveillance and Reconnaissance (DSTC4ISR)

DRDC Valcartier TM 2006-732 75

1 - Klaus Kollenberg (DSTC4ISR 3)

1 - Donna Wood (DSTC4ISR 4)

1 - Norbert Haché (DSTC4ISR SPO)

1 - Richard Lestage (Director Science and Technology Air 6)

76 DRDC Valcartier TM 2006-732

dcd03e rev.(10-1999)

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

(Highest Classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA

1. ORIGINATOR (name and address)
Defence Research and Development Canada Valcartier
2459, Pie-XI Blvd North
Québec, Québec
G3J 1X5 Canada

2. SECURITY CLASSIFICATION
(Including special warning terms if applicable)
Unclassified

3. TITLE (Its classification should be indicated by the appropriate abbreviation (S, C, R or U)
Opening up architectures of software-intensive systems: A functional decomposition to support system comprehension (U)

4. AUTHORS (Last name, first name, middle initial. If military, show rank, e.g. Doe, Maj. John E.)
Charland, Philippe; Ouellet, David; Dessureault, Dany; Lizotte, Michel

5. DATE OF PUBLICATION (month and year)
October 2007

6a. NO. OF PAGES
90

6b .NO. OF REFERENCES
106

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. Give the
inclusive dates when a specific reporting period is covered.)

Technical Memorandum

8. SPONSORING ACTIVITY (name and address)
Defence Research and Development Canada Valcartier
2459, Pie-XI Blvd North
Val-Bélair, Québec
G3J 1X5 Canada
9a. PROJECT OR GRANT NO. (Please specify whether project or
grant)
15ak

9b. CONTRACT NO.

10a. ORIGINATOR’S DOCUMENT NUMBER
DRDC Valcartier TM 2006-732

10b. OTHER DOCUMENT NOS

N/A

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security
classification)

 Unlimited distribution
 Restricted to contractors in approved countries (specify)
 Restricted to Canadian contractors (with need-to-know)
 Restricted to Government (with need-to-know)
 Restricted to Defense departments
 Others

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally
correspond to the Document Availability (11). However, where further distribution (beyond the audience specified in 11) is
possible, a wider announcement audience may be selected.)

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM
(Highest Classification of Title, Abstract, Keywords)

dcd03e rev.(10-1999)

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

(Highest Classification of Title, Abstract, Keywords)

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself.
It is highly desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin
with an indication of the security classification of the information in the paragraph (unless the document itself is unclassified)
represented as (S), (C), (R), or (U). It is not necessary to include here abstracts in both official languages unless the text is
bilingual).

With the increasing needs of the Canadian Forces (CF) for systems interoperability, techniques and tools have to be developed
in order to build systems of systems (SoS), i.e., systems whose components are themselves independent systems from an
operational and managerial viewpoint. However, before existing systems can interoperate, their architectures first need to be
recovered and comprehended. This technical memorandum describes the functional decomposition of an integrated suite of tools
to assist with software system architecture recovery and comprehension. It was designed based on the requirements already
identified in the scientific literature for comprehension tools, on a qualitative study conducted using existing tools, as well as on a
state-of-the-art survey on system architecture recovery and comprehension. Following the conception of this functional
decomposition, a prototype implementing it will be developed into an integrated development environment (IDE) to assist the CF
in recovering and comprehending the architecture of already existing software systems.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document
and could be helpful in cataloguing the document. They should be selected so that no security classification is required.
Identifiers, such as equipment model designation, trade name, military project code name, geographic location may also be
included. If possible keywords should be selected from a published thesaurus, e.g. Thesaurus of Engineering and Scientific
Terms (TEST) and that thesaurus-identified. If it is not possible to select indexing terms which are Unclassified, the
classification of each should be indicated as with the title.)

Software architecture recovery, program comprehension, program understanding tools, reverse engineering, functional
decomposition.

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM
(Highest Classification of Title, Abstract, Keywords)

Canada’s Leader in Defence
and National Security

Science and Technology

Chef de file au Canada en matière
de science et de technologie pour
la défense et la sécurité nationale

WWW.drdc-rddc.gc.ca

Defence R&D Canada R & D pour la défense Canada

	
	1. Introduction
	2. Cognitive Models of Program Comprehension
	2.1 Concepts and Terminology
	2.2 Cognitive Models
	2.2.1 Bottom-Up
	2.2.2 Top-Down
	2.2.3 Knowledge-Based
	2.2.4 Systematic and As-Needed
	2.2.5 Integrated Metamodel

	3. Factors Affecting Comprehension
	3.1 Program Characteristics
	3.2 Individual Programmer Differences
	3.3 Task Variability

	4. Cognitive Models and Tool Implications
	4.1 Browsing Support
	4.2 Searching
	4.3 Multiple Views
	4.4 Context-Driven Views

	5. Tool Requirements Explicitly Identified
	5.1 Biggerstaff
	5.2 Von Mayrhausser and Vans
	5.3 Singer and Lethbridge
	5.4 Erdös and Sneed

	6. Limitations of Existing Tools
	6.1 Multi-Language Support
	6.2 Static Analysis Support
	6.3 Dynamic Analysis Support
	6.4 Dynamic Visualization and Abstraction
	6.5 Domain Knowledge

	7. OASIS Functional Architecture
	7.1 Repositories
	7.1.1 Source Code
	7.1.1.1 File System
	7.1.1.2 Versioning Systems
	7.1.1.3 Integrated Development Environments

	7.1.2 Facts
	7.1.3 Models and Diagrams
	7.1.4 Documents

	7.2 Data Access
	7.2.1 Data Object Definition
	7.2.2 Marshalling
	7.2.3 Unmarshalling

	7.3 Information Management Services
	7.3.1 Exchange Model Definition
	7.3.2 Browsing
	7.3.3 Querying
	7.3.4 Publishing
	7.3.5 Subscription

	7.4 Fact Extraction
	7.4.1 Static Fact Extraction
	7.4.1.1 Parsing
	7.4.1.2 Decompilation
	7.4.1.3 Build File Parsing
	7.4.1.4 Database Schema Extraction

	7.4.2 Dynamic Fact Extraction
	7.4.2.1 Instrumenting
	7.4.2.2 Profiling
	7.4.2.3 Monitoring

	7.5 Analysis
	7.5.1 Software Metrics
	7.5.1.1 Size Metrics
	7.5.1.2 Complexity Metric
	7.5.1.3 Object-Oriented Class Metrics
	7.5.1.4 Object-Oriented Package Metrics

	7.5.2 Feature Location
	7.5.3 Domain Knowledge Exploitation

	7.6 Synthesis
	7.6.1 Design Pattern Recovery
	7.6.2 Platform Models Transformations
	7.6.3 Clustering

	7.7 Visualization
	7.7.1 Package Diagram
	7.7.2 Class Diagram
	7.7.3 Component Diagram
	7.7.4 Interaction Diagram
	7.7.5 Call Graph
	7.7.6 Statechart Diagram
	7.7.7 Activity Diagram
	7.7.8 Use Case Diagram
	7.7.9 Semantic Zooming

	7.8 Documentation Generation
	7.8.1 Rational Unified Process
	7.8.2 Department of Defense Architecture Framework
	7.8.3 IEEE 12207

	7.9 Comprehension Process
	7.9.1 Process Management
	7.9.2 Process Execution
	7.9.3 Domain Knowledge Definition

	7.10 Graphical User Interface

	8. Conclusions and Future Work
	9. References
	10. Appendix A
	10.
	10.

